[1]马迪,彭伟.相位信息和数学形态学的彩色图像边缘检测[J].应用科技,2010,37(05):37-40.[doi:10.3969/j.issn.1009-671X.2010.05.009]
 MA Di,PENG Wei.Color image edge detection based on phase information and mathematical morphology[J].Applied science and technology,2010,37(05):37-40.[doi:10.3969/j.issn.1009-671X.2010.05.009]
点击复制

相位信息和数学形态学的彩色图像边缘检测(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第37卷
期数:
2010年05期
页码:
37-40
栏目:
现代电子技术
出版日期:
2010-05-05

文章信息/Info

Title:
Color image edge detection based on phase information and mathematical morphology
文章编号:
1009-671X (2010) 05-0037-04
作者:
马迪彭伟
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
MA DiPENG Wei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
边缘检测HSV彩色空间相位一致数学形态学
Keywords:
edge detection HSV colorspace phase congruency mathematical morphology
分类号:
TP391
DOI:
10.3969/j.issn.1009-671X.2010.05.009
文献标志码:
A
摘要:
针对传统边缘检测算法最初只基于灰度图像,对彩色图像提取的边缘定位不准确、边缘有断点等问题,将在HSV彩色空间中对彩色图像进行了多通道边缘检测.考虑到传统边缘检测算子对图像的噪声和明暗程度比较敏感,采用相位一致和数学形态学相结合的方法对单通道图像进行边缘检测.仿真实验显示,该方法可以有效地提取彩色图像的边缘.
Abstract:
The traditional edge detection algorithm is only applicable to grayscale images. When it is used to the extraction of a color image, the edge can not be positioned exactly and the edge breakpoints usually happen. This paper presents an algorithm for multichannel edge detection of the color image in the HSV color space. Considering the traditional edge detection operator’s sensitivity to the brightness level and noise level of pictures, phase congruency and mathematical morphology method were combined in singlechannel image edge detection. Simulation results show that this algorithm can effectively extract the edge of color images.

参考文献/References:

[1] MARR D, HDLDRETH E C. Theory of edge detection [C]// Proceedings of the Royal Society of London. London, UK, 1980. 207 : 187-217.
[2]CANNY J F. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.
[3] CARRON T, LAMBERT P. Color edge detector using jointly hut, saturation and intensity[C]// IEEE International Conference on Image Processing.Austin,USA,1994:977-1081.
[4]MORRONE M C, OWENS R A. Feature detection from local energy [J]. Pattern Recognition Letters, 1987, 6(5):303-313.
[5]KOVESI P. Invariant measures of image features from phase information [D]. Perth: The University of Western Australia, 1996.
[6]KOVESI P. Image features from phase congruency [J]. Videre: Journal of Computer Vision Research, 1999, 1(3): 1-26.
[7]章毓晋.图像分析[M].北京:清华大学出版社,2005.

相似文献/References:

[1]席志红,郭亮,肖易寒.一种基于Contourlet变换的图像边缘检测方法[J].应用科技,2010,37(04):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
 XI Zhi-hong,GUO Liang,XIAO Yi-han.An image edge detection scheme based on Contourlet transform[J].Applied science and technology,2010,37(05):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
[2]杨维洲,马惠珠.移动式激光瞄准系统圆目标中心检测算法[J].应用科技,2010,37(05):5.[doi:10.3969/j.issn.1009-671X.2010.05.002]
 YANG Wei-zhou,MA Hui-zhu.Circular target centre detection algorithm for a mobile laseraiming system[J].Applied science and technology,2010,37(05):5.[doi:10.3969/j.issn.1009-671X.2010.05.002]
[3]陈立伟,王颖芳.皮肤纹理检测技术[J].应用科技,2010,37(07):48.[doi:10.3969/j.issn.1009-671X.2010.07.012]
 CHEN Li-wei,WANG Ying-fang.Skin texture detection technology[J].Applied science and technology,2010,37(05):48.[doi:10.3969/j.issn.1009-671X.2010.07.012]
[4]陈静,马惠珠.基于视频的人体运动肢体检测[J].应用科技,2011,38(03):29.[doi:10.3969/j.issn.1009-671X.2011.03.007]
 CHEN Jing,MA Huizhu.Video-based moving body detection[J].Applied science and technology,2011,38(05):29.[doi:10.3969/j.issn.1009-671X.2011.03.007]
[5]李万臣,王 炼.基于混合神经网络的图像分类矢量量化方法[J].应用科技,2006,33(06):21.
 LI Wan-chen,WANG Lian.Image sorting vector quantization method based on mixed neural network[J].Applied science and technology,2006,33(05):21.
[6]李万臣,张晋.基于模糊增强的安全带佩戴识别方法[J].应用科技,2015,42(01):22.[doi:10.3969/j.issn.1009671X.201404012]
 LI Wanchen,ZHANG Jin.A method of recognizing seatbelt wearing based on fuzzy enhancement[J].Applied science and technology,2015,42(05):22.[doi:10.3969/j.issn.1009671X.201404012]
[7]赵群.基于混合高斯模型的运动目标检测算法[J].应用科技,2015,42(01):19.
 ZHAO Qun.Moving object detection algorithm based on Gaussian mixture model[J].Applied science and technology,2015,42(05):19.
[8]蒲定,张万远,郭骏,等.水中气体目标的多波束声呐成像与检测算法[J].应用科技,2017,44(05):12.[doi:10.11991/yykj.201609015]
 PU Ding,ZHANG Wanyuan,GUO Jun,et al.Multi-beam sonar imaging and detection algorithm of subaqueous bubbles[J].Applied science and technology,2017,44(05):12.[doi:10.11991/yykj.201609015]
[9]董晴晴,王宏涛,李灏.基于图像处理技术的管道裂缝检测方法研究[J].应用科技,2018,45(01):96.[doi:10.11991/yykj.201703013]
 DONG Qingqing,WANG Hongtao,LI Hao.Research on pipeline crack detecting based on image processing technology[J].Applied science and technology,2018,45(05):96.[doi:10.11991/yykj.201703013]
[10]王东,黎万义,孙佳,等.基于机器视觉的微小零件表面缺陷检测研究[J].应用科技,2018,45(04):131.[doi:10.11991/yykj.201802005]
 WANG Dong,LI Wanyi,SUN Jia,et al.Research of small parts’ surface defects inspection based on machine vision[J].Applied science and technology,2018,45(05):131.[doi:10.11991/yykj.201802005]

备注/Memo

备注/Memo:
作者简介:马迪(1983-),男,硕士研究生,主要研究方向:数字图像处理,E-mail:madi@hrbeu.edu.cn.
更新日期/Last Update: 2010-05-26