[1]李纯,卢志茂,杨朋.基于快速谱聚类的图像分割算法[J].应用科技,2012,39(02):26-30.[doi:10.3969/j.issn.1009-671X. 201111006]
 LI Chun,LU Zhimao,YANG Peng.Image segmentation based on fast spectral clustering algorithm[J].Applied science and technology,2012,39(02):26-30.[doi:10.3969/j.issn.1009-671X. 201111006]
点击复制

基于快速谱聚类的图像分割算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年02期
页码:
26-30
栏目:
现代电子技术
出版日期:
2012-04-05

文章信息/Info

Title:
Image segmentation based on fast spectral clustering algorithm
文章编号:
1009-671X(2012)02-0026-05
作者:
李纯12 卢志茂1杨朋1
1.哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001 2.中国人民解放军91685部队,海南 陵水 572424
Author(s):
LI Chun12LU Zhimao1YANG Peng1
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China 2. No.91685 Unit of PLA, Lingshui 572424, China
关键词:
图像分割谱聚类余弦相似度Nyström逼近
Keywords:
image segmentation spectral clustering cosine similarity Nyström approximation
分类号:
TP391
DOI:
10.3969/j.issn.1009-671X. 201111006
文献标志码:
A
摘要:
设计了一种基于快速谱聚类的图像分割算法,该算法利用余弦相似度构造相似度矩阵,避免了传统谱聚类算法中尺度因子的精确设置问题,提高了算法效率. 在谱映射的过程中,该算法采用了Nyström逼近策略,降低了谱聚类算法的复杂度和内存消耗. 在Berkeley图像库上的图像分割实验证明了算法的有效性.
Abstract:
An image segmentation approach based on a fast spectral clustering algorithm is proposed, in which cosine similarity is used to attain similarity matrix. As a result, the problem of accurately setting the scale factor in the traditional spectral clustering algorithm is avoided, and the efficiency of the algorithm is improved. To efficiently apply the algorithm to image segmentation, Nyström approximation strategy is used in the course of spectral mapping to reduce the computation complexity and memory consumption. Experimental results on Berkeley image database show the validity of the algorithm.

参考文献/References:

[1] TAN P N, STEINBACH M, KUMAR V. Introduction to data mining.[M]. Toronto: Addison-Wesley Longman, 2005: 16-21.
[2] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61.
[3] 张向荣, 骞晓雪, 焦李成. 基于免疫谱聚类的图像分割[J]. 软件学报, 2010, 21(9): 2196-2205.
[4] DING S, ZHANG Liwen, ZHANG. Yu. Research on spectral clustering algorithms and prospects[C]// 2010 2nd International Conference on Computer Engineering and Technology. ChengDu, China, 2010: 149-153.
[5] BERRY M W. Large-scale sparse singular value computations[J]. The International Journal of Supercomputer Applications, 1992, 6(1): 13-49.
[6] NG A, JORDAN M, WEISS Y. On spectral clustering analysis and an algorithm[M]. Cambridge: MIT Press, 2002: 849- 856.
[7] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// Proceedings of the International Conference on Computer Vision. Los Alamitos, USA, 2001: 416-423.
[8] TAO W, JIN Hai, ZHANG Yimin. Color image segmentation based on mean shift and normalized cuts[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37(5): 1382-1388.
[9] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
[10] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[11] FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nyström method[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
[12] KEUCHEL J, SCHNÖRR C. Efficient graph cuts for unsupervised image segmentation using probabilistic sampling and SVD-based approximation[C]//3rd International Workshop on Statistical and Computational Theories of Vision at ICCV. Nice, France, 2003: 22-31.
[13] 李小斌, 田铮. 基于谱聚类的图像多尺度随机树分割[J]. 中国科学E辑:信息科学. 2007, 37(8): 1073-1085.
[14] 孙继广. 矩阵的扰动分析[M]. 2版. 北京:科学出版社, 2001: 168-169.

相似文献/References:

[1]席志红,张志,王帆.全方位视觉大图像并行解算方法研究[J].应用科技,2009,36(02):9.
 XI Zhi-hong,ZHANG Zhi,WANG Fan.Research on the parallel reverse solving methods for the omnidirectional large images[J].Applied science and technology,2009,36(02):9.
[2]曲昆鹏,郑丽颖.基于目标、背景比例的灰度图像自动阈值选取法[J].应用科技,2010,37(02):52.[doi:10.3969/j.issn.1009-671X.2010.02.013]
 QU Kun-peng,ZHENG Li-ying.Automatic thresholding of gray scale image based on the proportion of object and background[J].Applied science and technology,2010,37(02):52.[doi:10.3969/j.issn.1009-671X.2010.02.013]
[3]李万臣,葛秘蕾,井志强.基于云理论的图像分割新方法[J].应用科技,2010,37(03):45.[doi:10.3969/j.issn.1009-671X.2010.03.012]
 LI Wan-chen,GE Mi-lei,JING Zhi-qiang.A new method of image segmentation based on cloud theory[J].Applied science and technology,2010,37(02):45.[doi:10.3969/j.issn.1009-671X.2010.03.012]
[4]毕晓君,彭伟.基于改进贝叶斯优化算法的图像分割方法[J].应用科技,2010,37(12):19.[doi:10.3969/j.issn.1009-671X.2010.12.005]
 BI Xiao-jun,PENG Wei.Image segmentation based on improved Bayesian optimization algorithm[J].Applied science and technology,2010,37(02):19.[doi:10.3969/j.issn.1009-671X.2010.12.005]
[5]陈立伟,倪杰.基于多阈值模糊增强的手指静脉图像分割[J].应用科技,2011,38(04):14.[doi:doi:10.3969/j.issn.1009-671X.2011.04.04]
 CHEN Liwei,NI Jie.Method for finger vein feature segmentation based on multithreshold fuzzy enhancement[J].Applied science and technology,2011,38(02):14.[doi:doi:10.3969/j.issn.1009-671X.2011.04.04]
[6]吴怀群,黄宵宁,王建,等.一种基于熵值的自动阈值图像分割方法[J].应用科技,2011,38(08):1.[doi:10.3969/j.issn.1009-671X.2011.08.001]
 WU Huaiqun,HUANG Xiaoning,WANG Jian,et al.A method of image segmentation forautomatically calculating threshold based on entropy[J].Applied science and technology,2011,38(02):1.[doi:10.3969/j.issn.1009-671X.2011.08.001]
[7]朱丽莉,李真真.基于生物地理学模糊C均值聚类的图像分割算法[J].应用科技,2012,39(05):67.[doi:10.3969/j.issn.1009-671X.201205022]
 ZHU Lili,LI Zhenzhen.Image segmentation algorithm based on biogeography-based optimization and fuzzy C means clustering[J].Applied science and technology,2012,39(02):67.[doi:10.3969/j.issn.1009-671X.201205022]
[8]严冬梅.无需设置参数的快速PCNN图像分割[J].应用科技,2013,40(02):35.[doi:10.3969/j.issn.1007-7043.201208005]
 YAN Dongmei.Image segmentation based on fast PCNN without choosing parameters[J].Applied science and technology,2013,40(02):35.[doi:10.3969/j.issn.1007-7043.201208005]
[9]周璐璐,李 金,李 想,等.基于边缘检测与分裂合并的多区域分割研究[J].应用科技,2006,33(01):39.
 ZHOU Lu-lu,L I Jin,L IX iang,et al.Mult-i region segmentation technique based on edge detection and region merging[J].Applied science and technology,2006,33(02):39.
[10]李万臣,田淑娟.一种新的熵的提取方法在图像分割中的应用[J].应用科技,2013,40(05):48.[doi:10.3969/j.issn.1009-671X.201211014]
 LI Wanchen,TIAN Shujuan.Application of a new entropy extraction method in image segmentation[J].Applied science and technology,2013,40(02):48.[doi:10.3969/j.issn.1009-671X.201211014]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(60975042).
作者简介:李纯(1984-),男,硕士研究生,主要研究方向:模式识别, E-mail:lichun5431@163.com.
更新日期/Last Update: 2012-06-14