[1]杨咏梅,华煌圣,汪华,等.储能提升风电容量置信度的策略研究[J].应用科技,2017,44(01):18-22.[doi:10.11991/yykj.201508030]
 YANG Yongmei,HUA Huangsheng,WANG Hua,et al.Strategies for lifting the capacity credit of wind power by utilizing energy storage system[J].Applied science and technology,2017,44(01):18-22.[doi:10.11991/yykj.201508030]
点击复制

储能提升风电容量置信度的策略研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年01期
页码:
18-22
栏目:
现代电子技术
出版日期:
2017-02-05

文章信息/Info

Title:
Strategies for lifting the capacity credit of wind power by utilizing energy storage system
作者:
杨咏梅1 华煌圣1 汪华1 祁忠2
1. 广州供电局有限公司, 广东 广州 440110;
2. 南京南瑞继保电气有限公司, 江苏 南京 211102
Author(s):
YANG Yongmei1 HUA Huangsheng1 WANG Hua1 QI Zhong2
1. Guangzhou Power Supply Company Limited, Guangzhou 440110, China;
2. Nari Relays Electric Company Limited, Nanjing 211102, China
关键词:
间歇式能源风电储能置信度
Keywords:
intermittent energywind powerenergy storagecapacity credit
分类号:
TM743
DOI:
10.11991/yykj.201508030
文献标志码:
A
摘要:
为避免间歇式能源的波动性和随机性带来的资料浪费,利用储能来配合间歇式能源,提升间歇式能源的置信度,充分利用其容量价值。首先选择有效载负荷容量作为置信度的评价标准,运用可靠性理论,基于序贯蒙特卡洛方法建模,利用弦截法计算出间歇式能源置信度。然后以提高间歇式能源置信度为优化目标,研究储能的捆绑策略,采用优化粒子群算法计算出储能的配置容量。最后,从可靠性以及经济性角度出发,计算出储能的最优容量配置值。结果显示储能可以有效提高风电的容量置信度。
Abstract:
In order to avoid data waste caused by the fluctuation and randomness of intermittent energy, energy storage was utilized to assist the intermittent energy, so as to lift the capacity credit of intermittent energy and sufficiently utilize its capacity value. Firstly, the effective load capacity was taken as the evaluation criterion of capacity credit, the reliability theory was applied and the sequential Monte Carlo Method was the basis for modeling, and the secant method was applied to calculate the capacity credit of intermittent energy; then increasing the capacity credit of intermittent energy was taken as the optimization target for researching the binding strategy of energy storage, the particle swarm algorithm was applied to calculate the configured capacity of energy storage; finally, on the basis of the reliability and economical efficiency, the optimized capacity configuration of energy storage was calculated. The result shows that energy storage can effectively lift the capacity credit of wind power.

参考文献/References:

[1] Integration of Variable Generation Task Force. Accommodating high levels of variable generation[R]. Princeton:North American Electric Reliability Corporation, 2009.
[2] 梁双, 胡学浩, 张东霞, 等. 光伏发电置信容量的研究现状与发展趋势[J]. 电力系统自动化, 2011, 35(19):101-107.
[3] 王海超, 鲁宗相, 周双喜. 风电场发电容量可信度研究[J]. 中国电机工程学报, 2005, 25(10):103-106.
[4] 张硕, 李庚银, 周明. 考虑输电线路故障的风电场容量可信度计算. 中国电机工程学报, 2010, 30(16):19-25.
[5] 张宁, 康重庆, 陈治坪, 等. 基于序列运算的风电可信容量计算方法[J]. 中国电机工程学报, 2011, 31(25):1-9.
[6] LEE D, BALDICK R. Short-term wind power ensemble prediction based on Gaussian processes and neural networks[J]. IEEE transactions on smart grid, 2014, 5(1):501-510.
[7] FRIED L. GWEC Reveals Global Wind Industry Status of 2015[EB/OL].[2015-06-03]. http://www.gwec.net/gwec-reveals-global-wind-industry-statustry-stats-of-2015/.
[8] ZHANG Ning, KANG Chongqing, DUAN Changgang, et al. Simulation m ethodology of multiple wind farms operation considering wind speed correlation[J]. Power 8L energy systems, 2010, 30(4):264-273.
[9] 杨国华, 朱向芬, 周鑫, 等. 基于遗传算法的风电混合储能容量优化配置[J]. 电气传动, 2015, 45(2):50-53.
[10] 郑静, 文福拴, 李力. 计及风电场和储能系统联合运行的输电系统扩展规划[J]. 电力系统自动化, 2013(1):135-142.
[11] BLUDSZUWEIT H, DOMíNGUEZ-NAVARRO J A. A probabilistic method for energy storage sizing based on wind power forecast uncertainty[J]. IEEE transactions on power systems, 2011, 26(3):1651-1658.
[12] 谢晓锋, 张文俊, 杨之廉. 微粒群算法综述[J]. 控制与决策, 2003, 18(2):129-134.
[13] 朱向芬. 粒子群算法的混合储能系统容量优化配置[D]. 银川:宁夏大学, 2014.
[14] El-GALLAD A, El-HAWARY M, SALLAM A, et al. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones[C]//Canadian Conference on Electrical and Computer Engineering. Manitoba, Canada, 2002:78-81.
[15] 廖强强, 陆宇东, 王栋. 发电侧备用电池储能系统的技术经济分析[J]. 电力建设, 2014(1):118-121.

备注/Memo

备注/Memo:
收稿日期:2015-08-29。
基金项目:国家863计划项目(2012AA050214).
作者简介:杨咏梅(1970-),女,工程师.
通讯作者:杨咏梅,E-mail:yanyongmeigz@sina.com.
更新日期/Last Update: 2017-02-10