[1]丁虎,姚磊,刘少刚,等.基于神经网络和图像分割的林火图像识别研究[J].应用科技,2016,(03):82-86.[doi:10.11991/yykj.201510011]
 DING Hu,YAO Lei,LIU Shaogang,et al.The forest fire image recognition based on neural network and image segmentation[J].yykj,2016,(03):82-86.[doi:10.11991/yykj.201510011]
点击复制

基于神经网络和图像分割的林火图像识别研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2016年03期
页码:
82-86
栏目:
机电工程
出版日期:
2016-06-05

文章信息/Info

Title:
The forest fire image recognition based on neural network and image segmentation
作者:
丁虎1 姚磊2 刘少刚2 吴伟峰2 高春晓2
1. 中船重工集团第七〇四研究所, 上海 200031;
2. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
DING Hu1 YAO Lei2 LIU Shaogang2 WU Weifeng2 GAO Chunxiao2
1. China Shipbuilding Industry Corporation 704th Research Institute, Shanghai 200031, China;
2. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
森林灭火神经网络灭火航弹阈值分割图像识别
Keywords:
forest firefightingneural networkfire extinguishing bombthreshold segmentationimage recognition
分类号:
TP391
DOI:
10.11991/yykj.201510011
文献标志码:
A
摘要:
为了提高森林灭火航弹投放的准确性,提高航弹的利用率,对森林火灾图像识别方法进行了优化设计,将阈值分割和神经网络算法相结合,实现了火灾图像的智能识别,提高了图像识别的精确性。本研究利用高清摄像机获取森林火灾图像,采用阈值分割技术对图像进行提取,通过MATLAB计算得到有无火灾的信息,控制系统获取火灾信息后对灭火航弹的投放进行决策,提高了灭火过程的自动化水平。对图像识别算法进行了测试,通过测试发现,该算法可以有效地提高火灾的识别效率和识别精度,为森林灭火的自动化提供了参考。
Abstract:
In order to improve the release accuracy and utilization efficiency of fire extinguishing bomb, a forest fire image recognition technique was designed. Threshold segmentation was combined with the neural network algorithm to realize the intelligent image recognition of forest fire, which improves the accuracy of image recognition. The image of forest fire was acquired from HD video cameras and extracted by the technology of threshold segmentation in this study. The fire information can be obtained by MATLAB, and decisions on the release of fire extinguishing bombs were made by the control system after the fire information was analyzed. Therefore, the automatic level of firefighting was greatly improved. In addition, tests were made on the image recognition algorithm, and the results prove that the recognition efficiency and accuracy of forest fires can be effectively improved by using the proposed algorithm, which provides a reference for the automatic forest firefighting.

参考文献/References:

[1] PETRUCCI B, CAPITONI B, BORELLI R, et al. The "Forest Fire Project", national cartographic portal of the Italian Environmental Department:an example of management of cartographic data to support forest fires fighting plans in national parks[J]. Forest, 2010, 7:13-21.
[2] 魏茂洲, 王克印. 森林灭火装备的现状与展望[J]. 林业机械与木工设备, 2006, 34(7):11-14.
[3] 刘少刚, 周钊, 张书宇, 等. 森林灭火航弹智能观瞄投放控制系统设计[J]. 应用科技, 2014, 41(1):69-74.
[4] 邓波. 智能森林灭火航弹研究[D]. 哈尔滨:哈尔滨工程大学, 2011:1-2.
[5] 黄儒乐, 吴江, 韩宁. 林火烟雾图像自动识别中的模式分类器选择[J]. 北京林业大学学报, 2012, 34(1):92-95.
[6] 饶裕平, 柴红玲. 林火视频监控中烟识别方法概述[J]. 林业调查规划, 2009, 34(1):59-62.
[7] MAGESWARI S U, SRIDEVI M, MALA C. An experimental study and analysis of different image segmentation techniques[J]. Procedia engineering, 2013, 64:35-45.
[8] 高绪伟. 核PCA特征提取方法及其应用研究[D]. 南京:南京航空航天大学, 2009:42.
[9] YU Feng, XU Xiaozhong. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied energy, 2014, 134:102-113.
[10] SANKAR A B, SELVI J A V, KUMAR D, et al. Effective enhancement of classification of respiratory states using feed forward back propagation neural networks[J]. Sadhana, 2013, 38(3):377-395.

相似文献/References:

[1]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,(04):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
 WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].yykj,2011,(03):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
[2]刘少刚,吕建伟,王士成.基于数据融合与神经网络的火灾探测研究[J].应用科技,2011,(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
 LIU Shaogang,LV Jianwei,WANG Shicheng.A primitive study of fire detection method based on data fusion and BP neural network[J].yykj,2011,(03):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
[3]张文辉,胡小平,朱银发.自由漂浮空间机械臂基于神经网络的H∞鲁棒控制[J].应用科技,2012,(06):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
 ZHANG Wenhui,HU Xiaoping,ZHU Yinfa.Neural network based H∞ robust control of free-floating space robot manipulators[J].yykj,2012,(03):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
[4]袁建东,夏国清.神经网络监督控制在船用一体化压水堆功率控制中的应用[J].应用科技,2005,(01):24.
 YUAN Jiandong,XIA Guoqing.Application of neural network supervisory control to power regulating of marine integral pressurized water reactor[J].yykj,2005,(03):24.
[5]廖艳苹,谢 红,杨莘元.辅助式小波神经网络的调制识别技术[J].应用科技,2006,(04):24.
 LIAO Yan-ping,XIE Hong,YANG Shen-yuan.Recognition of modulation using assistant wavelet neural network[J].yykj,2006,(03):24.
[6]侯艳雪,黄曼磊,陶丽楠,等.神经网络在永磁同步电机变频调速系统中的应用[J].应用科技,2015,(02):1.[doi:10.3969/j.issn.1009-671X.201405020]
 HOU Yanxue,HUANG Manlei,TAO Linan,et al.Application of artificial neural network (ANN) in variable frequency speed control system of PMSM[J].yykj,2015,(03):1.[doi:10.3969/j.issn.1009-671X.201405020]
[7]陈立伟,黄璐,齐传斌.基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断[J].应用科技,2016,(02):70.[doi:10.11991/yykj.201506026]
 CHEN Liwei,HUANG Lu,QI Chuanbin.Fault diagnosis for gas turbine blades based on the relevance vector machine optimized by genetic algorithm[J].yykj,2016,(03):70.[doi:10.11991/yykj.201506026]
[8]朱少民,夏虹,杨波,等.蒸发器水位控制系统在线故障诊断方法[J].应用科技,2016,(05):75.[doi:10.11991/yykj.201512017]
 ZHU Shaomin,XIA Hong,YANG Bo,et al.On-line fault diagnosis method of steam generator water level control system[J].yykj,2016,(03):75.[doi:10.11991/yykj.201512017]
[9]张秋云,张营,李臣.遗传算法优化BP神经网络在中医按摩机器人中的应用[J].应用科技,2017,(02):73.[doi:10.11991/yykj.201603018]
 ZHANG Qiuyun,ZHANG Ying,LI Chen.Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot[J].yykj,2017,(03):73.[doi:10.11991/yykj.201603018]

备注/Memo

备注/Memo:
收稿日期:2015-10-19。
基金项目:哈尔滨市应用技术研究与开发项目(2013RFXXJ002);高等学校博士学科点专项科研基金项目(20102304110007).
作者简介:丁虎(1978-),男,博士,高级工程师;刘少刚(1962-),男,教授,博导.
通讯作者:刘少刚,E-mail:liushaogang@hrbeu.edu.cn.
更新日期/Last Update: 2016-06-08