[1]罗庆生,刘星栋,弓瑞,等.矢量喷水推进式水下机器人的建模仿真与验证[J].应用科技,2017,44(02):7-14.[doi:10.11991/yykj.201604004]
 LUO Qingsheng,LIU Xingdong,GONG Rui,et al.Simulation and experimental validation ofan autonomous underwater vehicle equipped with multi-vectored thrusters[J].yykj,2017,44(02):7-14.[doi:10.11991/yykj.201604004]
点击复制

矢量喷水推进式水下机器人的建模仿真与验证(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年02期
页码:
7-14
栏目:
船舶与海洋工程
出版日期:
2017-04-05

文章信息/Info

Title:
Simulation and experimental validation ofan autonomous underwater vehicle equipped with multi-vectored thrusters
作者:
罗庆生1 刘星栋1 弓瑞2 彭鲲宇2 孙尧1 张浩3
1. 北京理工大学 机电学院, 北京 100081;
2. 北京理工大学 自动化学院, 北京 100081;
3. 北京理工大学 宇航学院, 北京 100081
Author(s):
LUO Qingsheng1 LIU Xingdong1 GONG Rui2 PENG Kunyu2 SUN Yao1 ZHANG Hao3
1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. School of Automation, Beijing Institute of Technology, Beijing 100081, China;
3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
关键词:
多自由度自治水下机器人(AUV)矢量喷水推进系统理论建模MATLAB仿真ADAMS仿真实验验证
Keywords:
autonomous underwater vehiclevector propulsion systemdynamics modelMATLAB simulationADAMS simulationexperimental verification
分类号:
U661.71
DOI:
10.11991/yykj.201604004
文献标志码:
A
摘要:
为提高小型水下航行器的机动性与可控性,构建了一种基于矢量喷水推进系统的新型多自由度水下机器人。为使该机器人具有理想的运动特性和优异的操控性能,对其进行了理论建模、数值仿真与实验验证。首先建立其运动学和动力学模型,分析多矢量推进作用对机器人运动姿态和航行效果的影响,据此研究机器人多矢量喷水推进协调控制的策略与方法,实现机器人自主升沉、旋转、水平移动等多姿态水中运动。此后,采用MATLAB和ADAMS对所建模型和虚拟样机进行了数值仿真,并且对机器人实物样机进行了水下运动验证实验。仿真分析与实验验证的结果表明,该机器人的运动特性和操控性能符合高机动性和高可控性的设计要求。
Abstract:
This paper presented a novel multiple degrees of freedom underwater robot based on multi-vectored water-jet propulsion systems in order to improve the controllability and maneuverability. The dynamics model of the robot was developed theoretically, simulated numerically and validated by experiments to achieve best dynamics performance and excellent maneuverability. The dynamics model was established firstly, the influence of multi-vectored propulsion on the motion posture and navigation effect was analyzed. According to the model, the coordinated control realized by robot’s multi-vectored thrust was illustrated to implement various movements of robots, including automatically floating and submerging, rotating and horizontal movement. Numerical simulation was carried out by using MATLAB and ADAMS. Evaluation experiments were conducted to verify motional performance of prototype robots. Both results demonstrated motion characteristics and maneuverability of this type of underwater robot meet the design requirements of high controllability and maneuverability.

参考文献/References:

[1] 杨波, 方华京. 基于LQG/LTR的水下航行器多变量鲁棒控制[J]. 船海工程, 2008, 37(2): 142-144.
[2] 高剑, 徐德民, 赵宁宁, 等. 一类低速水下航行器的自适应反演运动控制[J]. 系统仿真学报,2008, 20(7): 1800-1802.
[3] 梁建宏, 郑卫丰, 文力, 等. 两关节仿生水下航行器SPC-Ⅲ的推进与机动性[J]. 机器人, 2010, 32(6): 726-731.
[4] CAVALLO E, MICHELINI R C, FILARETOV V F. Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster[J]. Journal of intelligent and robotic systems, 2004, 39(4): 365-391.
[5] DUCHEMIN O, LORAND A, NOTARIANNI M, et al. Multi-channel hall-effect thrusters: mission applications and architecture trade-offs[C]//Presented at the 30th International Electric Propulsion Conference. Florence, Italy,2007: 17-20.
[6] LE PAGE Y G, HOLAPPA K W. Simulation and control of an autonomous underwater vehicle equipped with a vectored thruster[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Providence, RI:IEEE, 2000, 3: 2129-2134.
[7] 罗庆生, 魏天骐, 莫洋, 等. 多自由度模块化链节式8足机器人三总线控制系统设计[J]. 北京理工大学学报,2013, 33(7): 698-703.
[8] 王晓鸣, 王树新, 张宏伟, 等. AUV水下着陆策略研究[J]. 机器人,2008, 30(4): 346-352.
[9] SMALLWOOD D A, WHITCOMB L L. Model-based dynamic positioning of underwater robotic vehicles: theory and experiment[J]. IEEE journal ofoceanic engineering, 2004, 29(1): 169-186.
[10] ARSLAN M S, FUKUSHIMA N, HAGIWARA I. Control of an ellipsoidal underwater vehicle with single actuator[C]//Proceedings of 2008 Canadian Conference onElectrical and Computer Engineering.Niagara Falls, ON: IEEE, 2008: 001433-001436.
[11] LI Jihong, LEE P M. A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle[J]. Robotics and autonomous systems, 2005, 52(2/3): 132-147.
[12] LIN Xichuan, GUO Shuxiang.Development of a spherical underwater robot equipped with multiple vectored water-jet-based thrusters[J]. Journal of intelligent & robotic systems, 2012, 67(3/4): 307-321.
[13] 陈小龙, 庞永杰, 李晔, 等. 基于极大似然估计的AUV水下地形匹配定位方法[J]. 机器人,2012, 34(5): 559-565.
[14] 李彦双, 孙健国. 综合飞行/矢量推进系统控制器分离方法[J]. 航空动力学报, 2009, 24(12): 2814-2820.
[15] 王晓鸣, 张宏伟, 王树新. 基于模糊控制的水下自航行器着陆策略分析[J]. 机械工程学报. 2009, 45(3): 84-88.

备注/Memo

备注/Memo:
收稿日期:2016-4-7。
基金项目:国家级大学生创新训练计划项目(201310007001).
作者简介:罗庆生(1959-),男,教授,博士.
通讯作者:刘星栋,E-mail:327581403@qq.com.
更新日期/Last Update: 2017-05-09