[1]肖易寒,李明逵,陈立伟.基于改进NSGA-Ⅱ算法的多光谱测温数据处理[J].应用科技,2017,44(01):33-39.[doi:10.11991/yykj.201604017]
 XIAO Yihan,LI Mingkui,CHEN Liwei.Data Processing of multi-wavelength thermometry based on improved NSGA-Ⅱ algorithm[J].Applied science and technology,2017,44(01):33-39.[doi:10.11991/yykj.201604017]
点击复制

基于改进NSGA-Ⅱ算法的多光谱测温数据处理(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年01期
页码:
33-39
栏目:
现代电子技术
出版日期:
2017-02-05

文章信息/Info

Title:
Data Processing of multi-wavelength thermometry based on improved NSGA-Ⅱ algorithm
作者:
肖易寒 李明逵 陈立伟
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
XIAO Yihan LI Mingkui CHEN Liwei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
多波长测温遗传算法改进的NSGA-Ⅱ算法精度稳定性
Keywords:
multi-wavelength thermometrygenetic algorithmimproved NSGA-Ⅱprecisionstability
分类号:
TN911.73
DOI:
10.11991/yykj.201604017
文献标志码:
A
摘要:
多波长测温能够对高速运动物体的温度进行测量,通过算法对其数据进行处理有助于提升测量的精度。通过对四光谱高温计获得温度的数据进行处理,计算得到目标的真实温度,测温范围为700~900℃。文中对NSGA-Ⅱ算法进行了修改,使其交叉变异概率以及交叉策略具有动态的调整的能力,并采用了与差分进化算法相融合对变异的方向进行了优化。利用改进后的算法从求解的稳定性、计算的精度、收敛速度以及对于经典发射率模型物体温度的求解精度上与目前测温所采用的遗传算法进行比较,结果表明应用改进的NSGA-Ⅱ算法求得的目标温度精度较高,稳定性较强。
Abstract:
The multi-wavelength thermometry can be used to measure the temperature of moving objects with high speed, and the data acquired can be improved with higher precision by processing the data with the algorithms. In this article the temperature data acquired by the four spectroscopic pyrometers was processed, the real temperature of the target was calculated within the scope of 700~900℃. In this paper, the NSGA-II algorithm was modified to make the crossover and mutation probability and crossover strategy own the ability of dynamic adjustment, and the direction of variation was optimized by the fusion of differential evolution algorithm. The improved algorithm was compared with the genetic algorithm in aspects of stability of the solution, precision of calculation, convergence speed and the precision of temperature for classical emissivity models. The results show that the improved NSGA-Ⅱ algorithm has higher accuracy and stronger stability in calculating the target temperature.

参考文献/References:

[1] 张崇关. 红外辐射温度测量关键技术研究[D]. 哈尔滨:哈尔滨工程大学, 2013:23-25.
[2] SONG Feihu, XU Chuanlong, WANG Shimin, et al. Measurement of temperature gradient in a heated liquid cylinder using rainbow refractometry assisted with infrared thermometry[J]. Optics communications, 2016, 380:179-185.
[3] 孙晓刚, 李成伟, 戴景民, 等. 多光谱辐射测温理论综述[J]. 计量学报, 2002, 23(4):248-250, 286.
[4] 邓兴凯, 杨永军. CCD多光谱辐射测温技术的应用与发展[J]. 计测技术, 2011, 31(1):45-49.
[5] 孙晓刚, 原桂彬, 戴景民. 基于遗传神经网络的多光谱辐射测温法[J]. 光谱学与光谱分析, 2007, 27(2):213-216.
[6] 张彩虹. 多光谱温度计的数据处理方法研究[D]. 哈尔滨:哈尔滨工业大学, 2006:30-32.
[7] ABDULHALIM M F, ATTEA B A. Multi-layer genetic algorithm for maximum disjoint reliable set covers problem in wireless sensor networks[J]. Wireless personal communications, 2015, 80(1):203-227.
[8] BETTI M, FACCHINI L, BIAGINI P. Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms[J]. Meccanica, 2015, 50(3):875-886.
[9] 孟红云. 多目标进化算法及其应用研究[D]. 西安:西安电子科技大学, 2005:34-62.
[10] XU Zhitao, MING X G, ZHENG Maokuan, et al. Cross-trained workers scheduling for field service using improved NSGA-II[J]. International journal of production research, 2015, 53(4):1255-1272.
[11] 崔庆勇. 基于改进NSGA-Ⅱ算法的多目标FJSP研究[D]. 昆明:昆明理工大学, 2015:30-35.
[12] PARK S Y, LEE J J. An efficient differential evolution using speeded-up k-nearest neighbor estimator[J]. Soft computing, 2014, 18(1):35-49.
[13] KARMAKAR A, GHATAK R, MISHRA R K, et al. Sierpinski carpet fractal-based planar array optimization based on differential evolution algorithm[J]. Journal of electromagnetic waves and applications, 2015, 29(2):247-260.
[14] 余廷芳, 王林, 彭春华. 改进NSGA-Ⅱ算法在锅炉燃烧多目标优化中的应用[J]. 计算机应用研究, 2013, 30(1):179-182.
[15] OKABE M, SHAHRIN M, AOKI H. Network expansion planning using improved controlled NSGA-II[J]. Electrical engineering in Japan, 2015, 193(4):38-48.
[16] WANG Long, WANG Tongguang, LUO Yuan. Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades[J]. Applied mathematics and mechanics, 2011, 32(6):739-748.

相似文献/References:

[1]姜弢,胡佳伟,侯艳丽.一种超宽带脉冲的设计新方法[J].应用科技,2008,35(12):11.
 JIANG Tao,HU Jia-wei,HOU Yan-li.A new approach to UWB pulse design[J].Applied science and technology,2008,35(01):11.
[2]严浙平,黄宇峰,李锋.遗传算法在AUV局部路径规划中的应用研究[J].应用科技,2009,36(02):46.
 YAN Zhe-ping,HUANG Yu-feng,LI Feng.Research on the application of genetic algorithm in localpath planning for AUV[J].Applied science and technology,2009,36(01):46.
[3]王帆,赵春晖,张志.基于克隆选择算法的人脸特征选择[J].应用科技,2009,36(03):11.
 WANG Fan,ZHAO Chun-hui,ZHANG Zh.Feature selection of face recognition based on genetic algorithm[J].Applied science and technology,2009,36(01):11.
[4]兰海,毛晓东,孙洪亮.STL在电网故障诊断遗传算法中的应用研究[J].应用科技,2009,36(09):56.[doi:10.3969/j.issn.1009-671X.2009.09.013]
 LAN Hai,MAO Xiao-dong,SUN Hong-liang.STL applied in genetic algorithm for fault diagnosis of power grid[J].Applied science and technology,2009,36(01):56.[doi:10.3969/j.issn.1009-671X.2009.09.013]
[5]杨雪娇,池海红.一种改进的光条中心提取方法[J].应用科技,2009,36(12):41.[doi:10.3969/j.issn.1009-671X.2009.12.011]
 YANG Xue-jiao,CHI Hai-hong.An improved method of extracting structured light strip center[J].Applied science and technology,2009,36(01):41.[doi:10.3969/j.issn.1009-671X.2009.12.011]
[6]杨奇,王福伟,何蕾,等.摆线针轮行星减速器最佳短幅系数的确定及优化[J].应用科技,2010,37(05):1.[doi:10.3969/j.issn.1009-671X.2010.05.001]
 YANG Qi,WANG Fu-wei,HE Lei,et al.Optimal value and optimal design of short width coefficient of cycloid pin gear planetary reducer[J].Applied science and technology,2010,37(01):1.[doi:10.3969/j.issn.1009-671X.2010.05.001]
[7]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,38(04):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
 WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].Applied science and technology,2011,38(01):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
[8]石远鹏,姜建军,郑德宇,等.输电线路巡检的路径规划与建模[J].应用科技,2011,38(11):18.[doi:10.3969/j.issn.1009-671X.2011.18.004]
 SHI Yuanpeng,JIANG Jianjun,ZHENG Deyu,et al.Route planning and modeling of transmission lines inspection[J].Applied science and technology,2011,38(01):18.[doi:10.3969/j.issn.1009-671X.2011.18.004]
[9]王健峰,张磊,陈国兴,等.基于改进的网格搜索法的SVM参数优化[J].应用科技,2012,39(03):28.[doi:10.3969/j.issn.1009-671X.201112016]
 WANG Jianfeng,ZHANG Lei,CHEN Guoxing,et al.A parameter optimization method for an SVM based on improved grid search algorithm[J].Applied science and technology,2012,39(01):28.[doi:10.3969/j.issn.1009-671X.201112016]
[10]吴楚成,边信黔.一种基于遗传算法的AUV动目标避碰规划的方法[J].应用科技,2005,32(05):43.

备注/Memo

备注/Memo:
收稿日期:2016-04-26。
基金项目:黑龙江省自然科学基金项目(F201413).
作者简介:肖易寒(1980-),女,讲师,博士;李明逵(1991-),男,硕士研究生.
通讯作者:李明逵,E-mail:470096974@qq.com.
更新日期/Last Update: 2017-02-10