[1]陈立伟,黄璐,曹欢.智能室内定位系统研究与实现[J].应用科技,2017,(06):10-19.[doi:10.11991/yykj.201609020]
 CHEN Liwei,HUANG Lu,CAO Huan.Research and implementation of intelligent indoor positioning system[J].yykj,2017,(06):10-19.[doi:10.11991/yykj.201609020]
点击复制

智能室内定位系统研究与实现(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年06期
页码:
10-19
栏目:
现代电子技术
出版日期:
2017-12-05

文章信息/Info

Title:
Research and implementation of intelligent indoor positioning system
作者:
陈立伟 黄璐 曹欢
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
CHEN Liwei HUANG Lu CAO Huan
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
室内定位航位推算iBeacon空间信息转弯校准单点校准微传感器智能终端
Keywords:
indoor positioningdead-reckoningiBeaconspatial informationturn calibrationsingle-point calibrationmicro-sensorintelligent terminal
分类号:
TN92
DOI:
10.11991/yykj.201609020
文献标志码:
A
摘要:
针对全球定位系统GPS不能提供令人满意的室内定位结果,提出一种基于空间信息模式下的室内定位技术,通过感知空间环境中的特征信息,采用一种增量式信息构建方式,结合低功耗蓝牙iBeacon以及多种传感器信息,以空间中特征信息区为路标修正行航位推算累积误差,最终实现了稳定独立的室内定位系统。为了验证设计思路的效果,通过与传统行人航位推算算法和iBeacon单点修正航位推算结果进行对比实验,最终结果表明传统航位推算回字形行走平均误差为0.83 m,蛇形行走平均误差为0.95 m;iBeacon单点修正回字形行走平均误差为0.32 m,蛇形行走平均误差为0.30 m;基于空间信息模式环境感知定位方式修正航位推算回字形行走的平均误差为0.29 m,蛇形行走的平均误差为0.09 m。达到了室内定位精度的标准,同时也验证了新方案的有效性以及定位系统的实效性。
Abstract:
Aiming at the problem that it is unable to provide satisfactory indoor positioning results by using global positioning system (GPS), this paper proposed an indoor positioning technology based on the mode of spatial information. By the perception for the characteristic information in space environment, an incremental way to build information was adopted, in combination with the Bluetooth iBeacon with low energy consumption and various sensor information, the characteristic information zone in space was taken as guidepost to correct the cumulative error of dead reckoning, finally, a stable and independent indoor positioning system was achieved. In order to verify the effect of the design ideas, this paper carried out a contrast test for the design, traditional pedestrian dead reckoning algorithm and iBeacon single-point corrected dead-reckoning algorithm, the final results are shown as follows: for the traditional pedestrian dead reckoning algorithm, the average error for hollow-square walking is 0.83 m, the average error for snake-shape walking is 0.95 m; for iBeacon single-point corrected dead-reckoning algorithm, the average error for hollow-square walking is 0.32 m, the average error for snake-shape walking is 0.30 m; for the revised dead-reckoning based on spatial information mode and environment perception means, the average error for hollow-square walking is 0.29 m, the average error for snake-shape walking is 0.09 m, the proposed system reached the standard of indoor positioning, in addition, the paper also verified the effectiveness of the new scheme and the pragmaticality of indoor positioning system.

参考文献/References:

[1] ?DONG L X. Indoor location in retail: Where is the money? [R]. ABI Research: Location Technologies Market Research, May 2015.
[2] YANG L, WORBOYS M. A navigation ontology for outdoor indoor space: (work-in-progress)[C]//Proceedings of the 3rd ACM SIGS patial International Workshop on Indoor Spatial Awareness. Chicago, USA, 2011: 31-34.
[3] 宋欣. 多传感融合的室内定位技术研究[D]. 上海: 上海交通大学, 2013.
[4] 余扬, 赵凯飞, 沈嘉. 室内定位技术应用、研究现状及展望[J]. 电信网技术, 2014(5): 46-49.
[5] 阮陵, 张翎, 许越, 等. 室内定位: 分类、方法与应用综述[J]. 地理信息世界, 2015(2): 8-14, 30.
[6] 高明, 吉祥, 刘宇, 等. ZigBee技术在室内定位中的应用[J]. 西安工业大学学报, 2010(1): 9-12.
[7] WITRISAL K, MEISSNER P, LEITINGER E, et al. High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend[J]. IEEE signal processing magazine, 2016, 32(2): 59-70.
[8] NI L M, LIU Y, LAU Y C, et al. LANDMARC: indoor location sensing using active RFID[J]. Wireless networks, 2004, 10(6): 701-710.
[9] CHON H D, JUN S, JUNG H, et al. Using RFID for accurate positioning[J]. Positioning, 2005, 3(1/2): 32-39.
[10] SONG J, HAAS C T, CALDAS C H. Tracking the location of materials on construction job sites[J]. Journal of construction engineering & management, 2006, 132(9): 911-918.
[11] SONG J, HAAS C T, CALDAS C, et al. Automating the task of tracking the delivery and receipt of fabricated pipe spools in industrial projects[J]. Automation in construction, 2006, 15(2): 166-177.
[12] ERGEN E, AKINCI B, SACKS R. Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS[J]. Automation in construction, 2007, 16(3): 354-367..
[13] GRAU D, CALDAS C H, HAAS C T, et al. Assessing the impact of materials tracking technologies on construction craft productivity[J]. Automation in construction, 2009, 18(7): 903-911.
[14] RAZAVI S N, HAAS C T. Multisensor data fusion for on-site materials tracking in construction[J]. Automation in construction, 2010, 19(8): 1037-1046.
[15] RAZAVI S N, HAAS C T. Reliability-based hybrid data fusion method for adaptive location estimation in construction[J]. Journal of computing in civil engineering, 2012, 26(1): 1-10.
[16] DING L Y, ZHOU C, DENG Q X, et al. Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things[J]. Automation in construction, 2013, 36(12): 25-37.
[17] LU M, CHEN W, SHEN X, et al. Positioning and tracking construction vehicles in highly dense urban areas and building construction sites[J]. Automation in construction, 2007, 16(5): 647-656.
[18] INGRAM S J, HARMER D, QUINLAN M. Ultrawideband indoor positioning systems and their use in emergencies[C]//Position Location And Navigation Symposium. Monterey, USA, 2004: 706-715.
[19] CHENG T, VENUGOPAL M, TEIZER J, et al. Performance evaluation of ultra wideband technology for construction resource location tracking in harsh environments[J]. Automation in construction, 2011, 20(8): 1173-1184.
[20] CHO Y K, YOUN J H, MARTINEZ D. Error modeling for an untethered ultra-wideband system for construction indoor asset tracking[J]. Automation in construction, 2010, 19(1): 43-54.
[21] SAIDI K S, TEIZER J, FRANASZEK M, et al. Static and dynamic performance evaluation of a commercially-available ultra wideband tracking system[J]. Automation in construction, 2011, 20(5): 19-530.

相似文献/References:

[1]闫保中,张帅,张宇.基于RFID的室内人员定位系统的设计与实现[J].应用科技,2011,(11):39.[doi:10.3969/j.issn.1009-671X.2011.11.010]
 YAN Baozhong,ZHANG Shuai,ZHANG Yu.Design and implementation of the indoor personnel positioning system based on RFID[J].yykj,2011,(06):39.[doi:10.3969/j.issn.1009-671X.2011.11.010]
[2]唐会林.SINS/DVL/UTP/VP组合导航系统在UUV回收中的应用[J].应用科技,2016,(03):1.[doi:10.11991/yykj.201504022]
 TANG Huilin.Application of SINS/DVL/UTP/VP integrated navigation system to UUV underwater docking[J].yykj,2016,(06):1.[doi:10.11991/yykj.201504022]
[3]谢红,曹欢,刘利国.基于iBeacon和多自由度MEMS的室内融合定位技术研究[J].应用科技,2017,(05):85.[doi:10.11991/yykj.201607015]
 XIE Hong,CAO Huan,LIU Liguo.Indoor positioning technology research based on iBeacon fusion and multiple degree of freedom of MEMS[J].yykj,2017,(06):85.[doi:10.11991/yykj.201607015]

备注/Memo

备注/Memo:
收稿日期:2016-09-30。
基金项目:国家863计划项目(SQ2016YFGX040104)
作者简介:陈立伟(1974-),女,副教授,博士;黄璐(1991-),男,硕士研究生
通讯作者:黄璐,E-mail:18642720668@163.com
更新日期/Last Update: 2018-01-06