[1]王霖郁,刘一博.基于光谱角匹配加权的高光谱图像异常检测[J].应用科技,2017,44(06):20-26.[doi:10.11991/yykj.201610010]
 WANG Linyu,LIU Yibo.Anomaly detection for hyperspectral image based on weighted spectral angle match[J].yykj,2017,44(06):20-26.[doi:10.11991/yykj.201610010]
点击复制

基于光谱角匹配加权的高光谱图像异常检测(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年06期
页码:
20-26
栏目:
现代电子技术
出版日期:
2017-12-05

文章信息/Info

Title:
Anomaly detection for hyperspectral image based on weighted spectral angle match
作者:
王霖郁 刘一博
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Linyu LIU Yibo
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像K-均值聚类加权核RX光谱角匹配异常检测光谱角余弦背景净化
Keywords:
hyperspectral imageK-means clusteringweightedkernel RXspectral angle matchanomaly detectionspectral angle cosinebackground optimization
分类号:
TP751
DOI:
10.11991/yykj.201610010
文献标志码:
A
摘要:
针对高光谱背景中存在异常和噪声的问题,提出了一种基于光谱角匹配(SAM)加权的核RX异常检测算法。首先对图像背景像元进行K-均值聚类,得到不同类背景对应的聚类中心,然后计算背景像元与聚类中心的光谱角余弦,选出较纯净的背景作为新背景,最后新背景中的每个像元将自己的光谱角信息作为权值,构造加权核RX异常检测算子,通过加权削弱了残留其中的异常和噪声的干扰。为验证算法的有效性,利用真实的AVIRIS和ROSIS-03遥感器采集高光谱数据进行了仿真实验,结果表明与对比算法相比,所提算法对潜在的异常具有较强的抑制能力,提高了检测精度。
Abstract:
In order to overcome the problem that hyperspectral image background samples contain anomalous pixels and noise, a kernel RX anomaly detection algorithm based on weighted spectral angle match (SAM) was proposed. Firstly, k-means clustering was performed on the background pixels of the image to obtain the cluster centers, then the spectral angle cosine of the background pixels and the cluster centers was calculated, the pure background was selected as the new background. Each pixel in the new background will own its spectral angle information as the weight, which is given to every background pixel to construct weighted kernel RX anomaly detector to weaken the interference of the residual outliers and noise. To validate the effectiveness of the proposed algorithm, experiments were conducted on real hyperspectral data from AVIRIS and ROSIS-03 remote sensor. The results show that by comparison with the compared algorithms, the proposed algorithm has strong suppression ability against potential outliers and can improve the detection accuracy.

参考文献/References:

[1] 杨桄, 张俭峰, 赵波, 等. 基于PCA和KRX算法的高光谱异常检测[J]. 应用科技, 2014, 41(5): 11-13.
[2] CHUDNOVSKY A, KOSTINSKI A, HERRMANN L, et al. Hyperspectral spaceborne imaging of dust-laden flows: anatomy of Saharan dust storm from the bodélé depression[J]. Remote sensing of environment, 2011, 115(4): 1013-1024.
[3] TIWARI K C, ARORA M K, SINGH D. An assessment of independent component analysis for detection of military targets from hyperspectral images[J]. International journal of applied earth observations & sgeoinformation, 2011, 13(5): 730-740.
[4] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE transactions on acoustics speech & signal processing, 1990, 38(10): 1760-1770.
[5] SAFA K, ABDOLREZA S. Anomaly detection in hyperspectral images based on an adaptive support vector method[J]. IEEE geoscience and remote sensing letters. 2011, 8(4): 646-650.
[6] KWON H, NASRABIDI N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on geoscience and remote sensing. 2005, 43(2): 388-397.
[7] 赵春晖, 李杰, 梅锋. 核加权RX高光谱图像异常检测算法[J]. 红外与毫米波学报, 2011, 29(5): 378-382.
[8] 王玉磊, 赵春晖, 齐滨. 基于光谱相似度量的高光谱图像异常检测[J]. 吉林大学学报: 工学版, 2013, 43(增): 149-153.
[9] BILLOR N, HADI A S, VELLEMAN P F. BACON: blocked adaptive computationally efficient outlier nominators[J]. Computational statistics & data analysis, 2000, 34(99): 279-298.
[10] DU B, ZHANG L. Random-selection-based anomaly detector for hyperspectral imagery[J]. IEEE transactions on geoscience & remote sensing, 2011, 49(5): 1578-1589.
[11] MOLERO J M, GARZON E M, GARCIA I, et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 801-814.
[12] JAMES NORMAN SWEET. The spectral similarity scale and its application to the classification of hyperspectral remote sensing data[D]. New York: State university of New York, College of Environmental Science and Forestry, 2002: 40-54.
[13] LOU C, ZHAO H. Local density-based anomaly detection in hyperspectral image[J]. Journal of applied remote sensing, 2015, 9(1): 095070.
[14] JOHN SHAWE-TAYLOR, NELLO CRISTIANINI. Kernel methods for pattern analysis[M]. Cambridge: Cambridge University, 2004: 152-198.

相似文献/References:

[1]张文升,王立国,孟凡旺.基于嵌套窗口的高光谱图像目标检测[J].应用科技,2009,36(05):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
 ZHANG Wen-sheng,WANG Li-guo,MENG Fan-wang.Nested spatial window based target detection for hyperspectral images[J].yykj,2009,36(06):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
[2]赵春晖,王楠楠.基于背景抑制及顶点成分分析的[J].应用科技,2009,36(09):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
 ZHAO Chun hui,WANG Nan nan.Anomaly detection of hyperspectral imagery based on background restrain and VCA[J].yykj,2009,36(06):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
[3]王立国,邓禄群,张晶.改进的SGA端元选择的快速方法[J].应用科技,2010,37(04):19.[doi:1009-671X (2010) 04-0019-04]
 WANG Li-guo,DENG Lu-qun,ZHANG Jing.A fast endmember selection method based on simplex growing algorithm[J].yykj,2010,37(06):19.[doi:1009-671X (2010) 04-0019-04]
[4]王立国,赵妍,王群明.基于POCS的高光谱图像超分辨率方法[J].应用科技,2010,37(10):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
 WANG Li-guo,ZHAO Yan,WANG Qun-ming.POCS based super-resolution method for hyperspectral imagery[J].yykj,2010,37(06):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
[5]杨桄1,张俭峰1,赵波2,等.基于 PCA 和 KRX 算法的高光谱异常检测[J].应用科技,2014,41(05):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
 ,,et al.Anomaly detection based on PCA and KRX in hyperspectral images[J].yykj,2014,41(06):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
[6]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
 WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].yykj,2017,44(06):12.[doi:10.11991/yykj.201606010]

备注/Memo

备注/Memo:
收稿日期:2016-10-25。
作者简介:王霖郁(1977-),女,副教授;刘一博(1992-),男,硕士研究生
通讯作者:刘一博,E-mail:413974717@qq.com
更新日期/Last Update: 2018-01-06