[1]张天翼,杨忠,韩家明,等.基于连续自适应均值漂移和立体视觉的无人机目标跟踪方法[J].应用科技,2018,45(02):55-59.[doi:10.11991/yykj.201706012]
 ZHANG Tianyi,YANG Zhong,HAN Jiaming,et al.Approach of vision navigation of UAV based on continuously adaptive mean-shift and stereo vision[J].yykj,2018,45(02):55-59.[doi:10.11991/yykj.201706012]
点击复制

基于连续自适应均值漂移和立体视觉的无人机目标跟踪方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年02期
页码:
55-59
栏目:
自动化技术
出版日期:
2018-03-15

文章信息/Info

Title:
Approach of vision navigation of UAV based on continuously adaptive mean-shift and stereo vision
作者:
张天翼 杨忠 韩家明 宋佳蓉 朱家远
南京航空航天大学 自动化学院, 江苏 南京 210016
Author(s):
ZHANG Tianyi YANG Zhong HAN Jiaming SONG Jiarong ZHU Jiayuan
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
连续自适应均值漂移立体视觉无人机目标跟踪障碍物识别立体匹配视觉导航图像分割
Keywords:
Camshiftstereo visionUAVobject trackingobstacle avoidance recognitionstereo matchvision navigationimage segmentation
分类号:
V249.32;TP751.1
DOI:
10.11991/yykj.201706012
文献标志码:
A
摘要:
为设计一种可自动跟踪、避障的无人机视觉导航技术,将无人机同时搭载双目和单目摄像头:单目摄像头采集无人机相对于被跟踪物体的图像,并采用经Kalman预测器优化的连续自适应均值漂移算法对目标进行有效跟踪;双目摄像头实时采集无人机前进方向上的图像信息,并利用SGM算法计算深度图以分割出无人机前进方向上的障碍物信息。无人机在跟踪目标物体的同时,可自主避开行进方向上的障碍物。实验结果表明,该方法可以有效引导无人机持续、精确地对目标物体进行跟踪,并在跟踪过程中及时躲避前进方向上的障碍物。
Abstract:
The purpose of this paper is to design an approach which lets the UAV automatically track the moving objects and avoid obstacles. In this approach, both the monocular and binocular cameras are installed on UAV. The images of a tracked object are captured by the monocular camera while the continuously adaptive mean-shift (Camshift) algorithm optimized by Kalman predictor is used to continuously track the target. At the same time, the image information in the forward direction of UAV is captured by the binocular cameras, SGM algorithm is used to generate depth maps, which are used to segment obstacles in front of UAV. By this approach, UAV can continuously track a moving vehicle and automatically avoid obstacles on the way of flight in real time. Experimental results demonstrate that this approach can effectively and precisely guide the UAV to track a moving object and avoid obstacles in the route of flight.

参考文献/References:

[1] 杨成顺, 杨忠, 葛乐, 等. 基于多旋翼无人机的输电线路智能巡检系统[J]. 济南大学学报:自然科学版, 2013, 27(4):358-362.
[2] 曾庆化, 潘鹏举, 刘建业, 等. 惯性信息辅助的大视角目标快速精确定位[J]. 航空学报, 2017, 38(8):321171.
[3] 周帅, 秦明伟, 侯宝临. 结合局部差分的CamShift动目标跟踪算法[J]. 自动化仪表, 2017, 38(2):1-4.
[4] ZHANG Tianyi, YANG Zhong, ZHANG Xiang, et al. A vision system for multi-rotor aircraft to track moving object[C]//IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Nanjing, China:IEEE, 2016:401-406.
[5] LEISHMAN R C. A vision-based relative navigation approach for autonomous multirotor aircraft[D]. Prowo, Utah:Brigham Young University, 2013.
[6] 吴显亮, 石宗英, 钟宜生. 无人机视觉导航研究综述[J]. 系统仿真学报, 2010, 22(S1):62-65.
[7] COURBON J, MEZOUAR Y, GUÉNARD N, et al. Vision-based navigation of unmanned aerial vehicles[J]. Control engineering practice, 2010, 18(7):789-799.
[8] ALLEN J G, XU R Y D, JIN J S. Object tracking using CamShift algorithm and multiple quantized feature spaces[C]//Pan-Sydney Area Workshop on Visual Information Processing. Australia:Australian Computer Society, 2004:3-7.
[9] 王晋疆, 刘阳, 吴明云. 基于快速鲁棒特征的CamShift跟踪算法[J]. 计算机应用, 2013, 33(2):499-502.
[10] 李明锁, 井亮, 邹杰, 等. 结合扩展卡尔曼滤波的CamShift移动目标跟踪算法[J]. 电光与控制, 2011, 18(4):1-5.
[11] 何俊, 樊卫华, 王冲, 等. 基于CamShift和Kalman组合的改进目标跟踪算法[J]. 计算机测量与控制, 2017, 25(3):209-212.
[12] HERMANN S, KLETTE R. Iterative semi-global matching for robust driver assistance systems[M]//LEE K M, MATSUSHITA Y, REHG J M, et al. Computer Vision-ACCV 2012. Berlin Heidelberg:Springer, 2013:465-478.

备注/Memo

备注/Memo:
收稿日期:2017-06-15。
基金项目:国家自然科学基金项目(61473144);航空科学基金重点实验室类项目(20162852031);科技部重大科学仪器设备开发专项项目(2016YFF0103702)
作者简介:张天翼(1993-),男,硕士研究生;杨忠(1969-),男,教授,博士生导师
通讯作者:杨忠,E-mail:YangZhong@nuaa.edu.cn
更新日期/Last Update: 2018-04-09