[1]李宗营,马传杰,杨传雷,等.RBF神经网络对STC柴油机调速系统性能改善研究[J].应用科技,2018,45(05):102-107.[doi:10.11991/yykj.201709017]
 LI Zongying,MA Chuanjie,YANG Chuanlei,et al.Research on the performance improvement of STC diesel engine speed control system by the RBF neural network[J].Applied science and technology,2018,45(05):102-107.[doi:10.11991/yykj.201709017]
点击复制

RBF神经网络对STC柴油机调速系统性能改善研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年05期
页码:
102-107
栏目:
动力与能源工程
出版日期:
2018-09-15

文章信息/Info

Title:
Research on the performance improvement of STC diesel engine speed control system by the RBF neural network
作者:
李宗营 马传杰 杨传雷 王银燕
哈尔滨工程大学 动力与能源工程学院, 哈尔滨市 150001
Author(s):
LI Zongying MA Chuanjie YANG Chuanlei WANG Yinyan
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
径向基函数神经网络增量式PID相继增压调速系统柴油机转速波动性能
Keywords:
radial basis functionneural networkincremental PIDsequential turbochargerspeed control systemdiesel enginespeed fluctuationperformance
分类号:
TP273
DOI:
10.11991/yykj.201709017
文献标志码:
A
摘要:
传统的PID调速系统由于比例、积分以及微分系数是固定不变的,在很多情况很难确定它们最佳的组合,出现切换过程转速波动大、调速效果不理想等问题。为解决上述问题,结合RBF神经网络与传统增量式PID调速系统建立了一种具有自适应功能的径向基神经网络PID(RBF-PID)调速系统,与此同时分别使用增量式PID与RBF-PID两种调速系统对某STC柴油机从1TC切换至2TC状态以及突加速情况进行调速控制模拟。结果表明:当采用RBF-PID调速系统时,STC柴油机切换过程的最大转速波动比增量式PID调速系统下降51%,且回归至稳定转速的时间减少28.6%;同时在突加速情况下的稳定时间比增量式PID调速系统下降72.6%,且转速超调量仅为3 r/min。
Abstract:
As the proportion, integral and differential coefficients of the traditional PID speed control system are fixed, it is difficult to determine the best combination in most cases, and speed control is not ideal in the switching process due to large fluctuation of speed. In order to solve the above problem, in this paper, an RBF-PID speed control system with adaptive function is established by combining radial basis function (RBF) neural network and classical incremental proportion integration differentiation (PID). At the same time, simulate the STC diesel engine’s switching process from 1TC to 2TC and sudden acceleration process using the incremental PID and the RBF-PID speed control system respectly. The result shows that when using the RBF-PID speed control system, the maximum speed fluctuation drops by 51% and the time to return to steady speed is reduced by 28.6% compared with incremental PID speed control system in the swiching process, what’s more, the stabilization time is reduced by 28.6% and the speed overshoot is just 3 r/min in the sudden acceleration process.

参考文献/References:

[1] 王银燕, 于恩程. 相继增压柴油机瞬态切换喷油策略[J]. 哈尔滨工程大学学报, 2012, 33(7):839-844
[2] 王永骥, 涂键. 神经元网络控制[M]. 北京:机械工业出版社, 1998:303-310.
[3] 夏思为, 段书凯, 王丽丹, 等. 基于忆阻神经网络PID控制器设计[J]. 计算机学报, 2013, 36(12):2577-2586
[4] SHAO Shihuang. Fuzzy self-organizing controller and its application for dynamic processes[J]. Fuzzy sets and systems, 1988, 26(2):151-164.
[5] 许焕升. 左右脑与领导力平衡法则[J]. 当代经理人, 2007(5):110-111
[6] 胡守仁, 沈清, 胡德文, 等. 神经网络应用技术[M]. 长沙:国防科技大学出版社, 1995.
[7] 孙增圻. 智能控制理论与技术[M]. 北京:清华大学出版社, 1997:125-239.
[8] 乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计[J]. 自动化学报, 2010, 36(6):865-872
[9] 屈毅, 宁铎, 赖展翅, 等. 温室温度控制系统的神经网络PID控制[J]. 农业工程学报, 2011, 27(2):307-311
[10] 周维华. RBF神经网络隐层结构与参数优化研究[D]. 上海:华东理工大学, 2014.
[11] 朱逢锐. 基于RBF神经网络的PID自校正控制研究及应用[D]. 淮南:安徽理工大学, 2017.
[12] 李广军. 基于RBF神经网络的PID整定[D]. 成都:西南交通大学, 2005.

相似文献/References:

[1]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,38(04):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
 WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].Applied science and technology,2011,38(05):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
[2]刘少刚,吕建伟,王士成.基于数据融合与神经网络的火灾探测研究[J].应用科技,2011,38(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
 LIU Shaogang,LV Jianwei,WANG Shicheng.A primitive study of fire detection method based on data fusion and BP neural network[J].Applied science and technology,2011,38(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
[3]张文辉,胡小平,朱银发.自由漂浮空间机械臂基于神经网络的H∞鲁棒控制[J].应用科技,2012,39(06):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
 ZHANG Wenhui,HU Xiaoping,ZHU Yinfa.Neural network based H∞ robust control of free-floating space robot manipulators[J].Applied science and technology,2012,39(05):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
[4]袁建东,夏国清.神经网络监督控制在船用一体化压水堆功率控制中的应用[J].应用科技,2005,32(01):24.
 YUAN Jiandong,XIA Guoqing.Application of neural network supervisory control to power regulating of marine integral pressurized water reactor[J].Applied science and technology,2005,32(05):24.
[5]廖艳苹,谢 红,杨莘元.辅助式小波神经网络的调制识别技术[J].应用科技,2006,33(04):24.
 LIAO Yan-ping,XIE Hong,YANG Shen-yuan.Recognition of modulation using assistant wavelet neural network[J].Applied science and technology,2006,33(05):24.
[6]侯艳雪,黄曼磊,陶丽楠,等.神经网络在永磁同步电机变频调速系统中的应用[J].应用科技,2015,42(02):1.[doi:10.3969/j.issn.1009-671X.201405020]
 HOU Yanxue,HUANG Manlei,TAO Linan,et al.Application of artificial neural network (ANN) in variable frequency speed control system of PMSM[J].Applied science and technology,2015,42(05):1.[doi:10.3969/j.issn.1009-671X.201405020]
[7]陈立伟,黄璐,齐传斌.基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断[J].应用科技,2016,43(02):70.[doi:10.11991/yykj.201506026]
 CHEN Liwei,HUANG Lu,QI Chuanbin.Fault diagnosis for gas turbine blades based on the relevance vector machine optimized by genetic algorithm[J].Applied science and technology,2016,43(05):70.[doi:10.11991/yykj.201506026]
[8]丁虎,姚磊,刘少刚,等.基于神经网络和图像分割的林火图像识别研究[J].应用科技,2016,43(03):82.[doi:10.11991/yykj.201510011]
 DING Hu,YAO Lei,LIU Shaogang,et al.The forest fire image recognition based on neural network and image segmentation[J].Applied science and technology,2016,43(05):82.[doi:10.11991/yykj.201510011]
[9]朱少民,夏虹,杨波,等.蒸发器水位控制系统在线故障诊断方法[J].应用科技,2016,43(05):75.[doi:10.11991/yykj.201512017]
 ZHU Shaomin,XIA Hong,YANG Bo,et al.On-line fault diagnosis method of steam generator water level control system[J].Applied science and technology,2016,43(05):75.[doi:10.11991/yykj.201512017]
[10]张秋云,张营,李臣.遗传算法优化BP神经网络在中医按摩机器人中的应用[J].应用科技,2017,44(02):73.[doi:10.11991/yykj.201603018]
 ZHANG Qiuyun,ZHANG Ying,LI Chen.Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot[J].Applied science and technology,2017,44(05):73.[doi:10.11991/yykj.201603018]

备注/Memo

备注/Memo:
收稿日期:2017-09-26。
基金项目:国家科技支撑计划项目(2015BA916B01)
作者简介:李宗营(1991-),男,硕士研究生;王银燕(1961-),女,教授,博士生导师
通讯作者:杨传雷,E-mail:dalei1999@163.com
更新日期/Last Update: 2018-09-04