[1]段京京,张薇.一种3D Massive MIMO Kronecker信道模型[J].应用科技,2018,45(06):37-41.[doi:10.11991/yykj.201801003]
 DUAN Jingjing,ZHANG Wei.A 3D Massive MIMO kronecker channel model[J].Applied science and technology,2018,45(06):37-41.[doi:10.11991/yykj.201801003]
点击复制

一种3D Massive MIMO Kronecker信道模型(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年06期
页码:
37-41
栏目:
现代电子技术
出版日期:
2018-11-05

文章信息/Info

Title:
A 3D Massive MIMO kronecker channel model
作者:
段京京 张薇
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
DUAN Jingjing ZHANG Wei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
Massive MIMO信道模型Kronecker模型非平稳特性散射簇生灭过程幸存概率矩阵空间相关性
Keywords:
Massive MIMOchannel modelKronecker modelnon-stationary propertyscattering clusterbirth-death processsurvival probability matrixspatial correlation
分类号:
TN911
DOI:
10.11991/yykj.201801003
文献标志码:
A
摘要:
为建立适用大规模MIMO系统性能分析和评估的信道模型,提出了一种3D Massive MIMO Kronecker信道模型。在传统3D MIMO Kronecker信道模型研究基础上,利用生灭过程建模散射簇在阵列轴的非平稳演变来表征Massive MIMO信道的非平稳特性,将生灭过程的影响抽象为幸存概率矩阵。通过仿真实验可以验证,所提信道模型不仅能够表征大规模天线阵列的空间相关性,而且可以描述散射簇在大规模天线阵列轴上的演变。
Abstract:
To establish a rational channel model for performance analysis and evaluation suitable for massive multiple-input multiple-output (MIMO) system, this paper proposes a 3D Massive MIMO Kronecker channel model. On basis of the study of traditional 3D MIMO Kronecker channel model, the non-stationary characteristics of Massive MIMO channel are characterized by using the birth-death process to model the non-stationary evolution of scattering clusters on the array axis. The birth-death process is abstracted as the survival probability matrix. Simulation results show that the proposed channel model can not only capture the spatial correlation of large-scale antenna arrays, but also describe the evolution of scattering clusters on the large-scale antenna array axis.

参考文献/References:

[1] JUNGNICKEL V, MANOLAKI K, ZIRWAS W, et al. The role of small cells, coordinated multipoint, and massive MIMO in 5G[J]. IEEE communications magazine, 2014, 52(5):44-51.
[2] DONG Lei, ZHAO Hongyi, CHEN Yan, et al. Introduction on IMT-20205G trials in China[J]. IEEE journal on selected areas in communications, 2017, 35(8):1849-1866.
[3] 刘留, 陶成, 卢艳萍, 等. 大规模多天线无线信道及容量特性研究[J]. 北京交通大学学报, 2015, 39(2):69-79.
[4] GAO Xiang, EDFORS O, RUSEK F, et al. Massive MIMO performance evaluation based on measured propagation data[J]. IEEE transactions on wireless communications, 2015, 14(7):3899-3911.
[5] NOH S, ZOLTOWSKI M D, SUNG Y, et al. Pilot beam pattern design for channel estimation in massive MIMO systems[J]. IEEE journal of selected topics in signal processing, 2014, 8(5):787-801.
[6] CHUAH C N, TSE D N C, KAHN J M, et al. Capacity scaling in MIMO wireless systems under correlated fading[J]. IEEE transactions on information theory, 2002, 48(3):637-650.
[7] LI Jianzheng, LI Fei, JI Wei, et al. Three-dimension kronecker channel modeling and correlation analysis[J]. International journal of interdisciplinary telecommunications and networking, 2015, 7(4):43-56.
[8] ZHANG Ping, CHEN Jianqiao, TANG Tian. An overview of non-stationary property for massive MIMO channel modeling[J]. ZTE communications, 2017, 15(1):3-7.
[9] WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A novel Kronecker-based stochastic model for massive MIMO channels[C]//Proceedings of 2015 IEEE/CIC International Conference on Communications in China. Shenzhen, China, 2016:1-6.
[10] ADEMAJ F, TARANETZ M, RUPP M. 3GPP 3D MIMO channel model:a holistic implementation guideline for open source simulation tools[J]. EURASIP journal on wireless communications and networking, 2016, 2016:55.
[11] GAO Xiang, TUFVESSON F, EDFORS O, et al. Measured propagation characteristics for very-large MIMO at 2.6 GHz[C]//Proceedings of 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, 2012:295-299.
[12] ZWICK T, FISCHER C, WIESBECK W. A stochastic multipath channel model including path directions for indoor environments[J]. IEEE journal on selected areas in communications, 2002, 20(6):1178-1192.
[13] PAPOULIS A, PILLAI S. Probability, random variables, and stochastic processes[M]. 4th ed. New York:McGraw-Hill, 2002:1637-1637.
[14] CHO Y S, KIM J, YANG W Y, et al. MIMO-OFDM无线通信技术及MATLAB实现[M]. 孙锴, 黄威, 译. 北京:电子工业出版社, 2013:237-237.

备注/Memo

备注/Memo:
收稿日期:2018-01-14。
基金项目:黑龙江省科学基金项目(F2017003)
作者简介:段京京(1992-),男,硕士研究生;张薇(1972-),女,副教授,博士
通讯作者:段京京,E-mail:duanjing@hrbeu.edu.cn
更新日期/Last Update: 2018-11-02