[1]常乐,杨忠,张秋雁,等.悬挂负载空中机器人的抗摆控制[J].应用科技,2020,47(2):17-22.[doi:10.11991/yykj.201906003]
 CHANG Le,YANG Zhong,ZHANG Qiuyan,et al.Anti-swing control research of aerial robot with suspended load[J].Applied science and technology,2020,47(2):17-22.[doi:10.11991/yykj.201906003]
点击复制

悬挂负载空中机器人的抗摆控制(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年2期
页码:
17-22
栏目:
智能科学与技术
出版日期:
2020-03-05

文章信息/Info

Title:
Anti-swing control research of aerial robot with suspended load
作者:
常乐1 杨忠1 张秋雁2 王少辉1 李捷文1
1. 南京航空航天大学 自动化学院,江苏 南京 211106;
2. 贵州电网有限责任公司电力科学研究院,贵州 贵阳 550002
Author(s):
CHANG Le1 YANG Zhong1 ZHANG Qiuyan2 WANG Shaohui1 LI Jiewen1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Electric Power Research Institute of Guizhou Power Grid Co., Ltd, Guiyang 550002, China
关键词:
空中机器人无人机悬挂负载抗摆控制滑模控制分层滑模积分反步可变边界层
Keywords:
aerial robotunmanned air vehiclesuspended loadanti-swing controlsliding mode controlhierarchical sliding-modeintegral back-steppingvariable boundary layer
分类号:
TP242.2
DOI:
10.11991/yykj.201906003
文献标志码:
A
摘要:
为了解决悬挂负载空中机器人飞行时产生的负载摆动和残余振荡问题,本文采用滑模变结构方法设计了高度控制器和抗摆控制器。首先建立悬挂负载空中机器人的动力学模型,基于此设计出一阶滑模的高度控制器和二阶滑模的抗摆控制器,并且提出了一种改进型的边界层厚度可变的边界层法来降低抖震现象。最后使用MATLAB和Adams联合仿真,验证控制器的有效性。结果表明,设计出的控制器具有良好的抗摆效果,满足系统要求。
Abstract:
In this paper, in order to solve the problem of load swing and residual oscillation during the flight of an aerial robot with suspended load, the sliding mode variable structure method is used to design the height controller and anti-swing controller. Firstly, the dynamic model of an aerial robot with suspended load is established. On this basis, the height controller of the first-order sliding mode and the anti-swing controller of the second-order sliding mode are designed. An improved boundary layer method with variable thickness of boundary layer is proposed to reduce the chattering phenomenon. Finally, the validity of the controller is verified by the joint simulation with MATLAB and Adams. The results show that the designed controller has excellent anti-swing effect and meets the system requirements.

参考文献/References:

[1] TOGNON M, FRANCHI A. Nonlinear observer-based tracking control of link stress and elevation for a tethered aerial robot using inertial-only measurements[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation. Seattle, USA, 2015: 3994–3999.
[2] 王冠林, 朱纪洪. 空中机器人系统及关键技术[J]. 飞航导弹, 2009(6): 52–59
[3] MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city: applications and challenges[J]. IEEE communications magazine, 2017, 55(3): 22–28.
[4] MO Rigen, GENG Qingbo, LU Xin. Study on control method of a rotor UAV transportation with slung-load[C]//Proceedings of the 2016 35th Chinese Control Conference. Chengdu, China, 2016: 3274–3279.
[5] 刘泽锋, 唐宇, 骆少明, 等. 多旋翼植保无人机变量喷洒系统设计[J]. 农机化研究, 2018, 40(12): 47–54
[6] KLAUSEN K, FOSSEN T I, JOHANSEN T A. Nonlinear control of a multirotor UAV with suspended load[C]//Proceedings of 2015 International Conference on Unmanned Aircraft Systems. Denver, CO, USA, 2015: 176–184.
[7] SREENATH K, MICHAEL N, KUMAR V. Trajectory generation and control of a quadrotor with a cable-suspended load - A differentially-flat hybrid system[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 4888–4895.
[8] ALOTHMAN Y, GU Dongbing. Quadrotor transporting cable-suspended load using iterative Linear Quadratic regulator (iLQR) optimal control[C]//Proceedings of the 2016 8th Computer Science and Electronic Engineering. Colchester, UK, 2017: 168–173.
[9] FAUST A, PALUNKO I, CRUZ P, et al. Learning swing-free trajectories for UAVs with a suspended load[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 4902–4909.
[10] PALUNKO I, FIERRO R, CRUZ P. Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: a dynamic programming approach[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA, 2012: 2691–2697.
[11] 高皜, 曹琳, 曹茂永. 倒立摆系统基于能量控制的起摆控制策略研究[J]. 山东科技大学学报(自然科学版), 2016, 35(6): 95–100
[12] XIA Yuanqing, FUMengyin, DENG Zhihong, et al. Recent developments in sliding mode control and active disturbance rejection control[J]. 控制理论与应用, 2013, 30(2): 137–147
[13] LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International journal of control, 2003, 76(9/10): 924–941.
[14] YANG Liang, YANG Jianying. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International journal of robust and nonlinear control, 2011, 21(16): 1865–1879.
[15] 彭继慎, 刘盼, 宋立业. 倒立摆的神经网络自适应滑模控制[J]. 控制工程, 2018, 25(11): 1976–1981
[16] 赵文杰, 刘吉臻. 一种改进的边界层滑模控制方法[J]. 系统仿真学报, 2005, 17(1): 156–158, 180
[17] 张翔, 王德石, 李景熹. 滑模控制器趋近律仿真研究[J]. 微处理机, 2008, 29(1): 80–81
[18] 王健, 蔡宇萌. 主动悬架的滑模控制指数趋近率参数优化[J]. 重庆理工大学学报(自然科学版), 2017, 31(9): 15–21

相似文献/References:

[1]杨成顺,杨忠,马俊,等.基于MS5540C的无人机高度传感器设计[J].应用科技,2010,37(08):26.[doi:10.3969/j.issn.1009-671X.2010.08.007]
 YANG Cheng-shun,YANG Zhong,MA Jun,et al.Design of UAV altimeter based on MS5540C[J].Applied science and technology,2010,37(2):26.[doi:10.3969/j.issn.1009-671X.2010.08.007]
[2]孙日明,赵龙.基于MapX的小型无人机地面站飞行控制软件[J].应用科技,2012,39(06):1.[doi:10.3969/j.issn.1009-671X.2012.201204005]
 SUN Riming,ZHAO Long.MapX-based ground control software for miniature UAV[J].Applied science and technology,2012,39(2):1.[doi:10.3969/j.issn.1009-671X.2012.201204005]
[3]杨成顺,杨忠,薛八阳.基于人工标志的无人机视觉导航方法[J].应用科技,2015,42(05):34.[doi:10.11991/yykj.201505016]
 YANG Chengshun,YANG Zhong,XUE Bayang.An approach of vision navigation of UAV based on artificial marks[J].Applied science and technology,2015,42(2):34.[doi:10.11991/yykj.201505016]
[4]张天翼,杨忠,韩家明,等.基于连续自适应均值漂移和立体视觉的无人机目标跟踪方法[J].应用科技,2018,45(02):55.[doi:10.11991/yykj.201706012]
 ZHANG Tianyi,YANG Zhong,HAN Jiaming,et al.Approach of vision navigation of UAV based on continuously adaptive mean-shift and stereo vision[J].Applied science and technology,2018,45(2):55.[doi:10.11991/yykj.201706012]
[5]刘鲁涛,王晓,李欣雨.基于视觉显著性的空中目标检测算法[J].应用科技,2019,46(01):88.[doi:10.11991/yykj.201811015]
 LIU Lutao,WANG Xiao,LI Xinyu.An aerial target detection algorithm based on visual significance[J].Applied science and technology,2019,46(2):88.[doi:10.11991/yykj.201811015]
[6]薛睿,韩璐.网络编码在无人机通信网络中的应用研究[J].应用科技,2019,46(06):25.[doi:10.11991/yykj.201812026]
 XUE Rui,HAN Lu.Application of network coding in UAV communication network[J].Applied science and technology,2019,46(2):25.[doi:10.11991/yykj.201812026]
[7]王赫男.基于激光测距无人机的输电线路覆冰厚度测量[J].应用科技,2019,46(06):46.[doi:10.11991/yykj.201812007]
 WANG Henan.Measurement for ice thickness of transmission line based on laser ranging drone[J].Applied science and technology,2019,46(2):46.[doi:10.11991/yykj.201812007]

备注/Memo

备注/Memo:
收稿日期:2019-06-10。
基金项目:中国南方电网有限责任公司科技项目(066600KK52170074);国家自然科学基金项目(61473144);江苏高校优势学科建设工程资助项目;国家重点研发计划项目(2017YFE0113200);南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20180322)
作者简介:常乐,男,硕士研究生;杨忠,男,教授,博士生导师
通讯作者:杨忠,E-mail:YangZhong@nuaa.edu.cn
更新日期/Last Update: 2020-04-21