[1]富威,吴琼,龚军军,等.大口径舰炮摇架的结构优化[J].应用科技,2020,47(1):118-122.[doi:10.11991/yykj.201910003]
 FU Wei,WU Qiong,GONG Junjun,et al.Structural optimization of large caliber naval gun cradle[J].Applied science and technology,2020,47(1):118-122.[doi:10.11991/yykj.201910003]
点击复制

大口径舰炮摇架的结构优化(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第47卷
期数:
2020年1期
页码:
118-122
栏目:
机电工程
出版日期:
2020-01-15

文章信息/Info

Title:
Structural optimization of large caliber naval gun cradle
作者:
富威 吴琼 龚军军 赵书樊 左沅昊
哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨 150001
Author(s):
FU Wei WU Qiong GONG Junjun ZHAO Shufan ZUO Yuanhao
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
大口径舰炮摇架有限元拓扑优化遗传算法尺寸优化瞬态分析
Keywords:
large calibernavalcradlefinite elementtopology optimizationgenetic algorithmsize optimizationtransient analysis
分类号:
TG391
DOI:
10.11991/yykj.201910003
文献标志码:
A
摘要:
为了提高大口径舰炮摇架的振动性能,满足其结构设计轻量化要求,以摇架为研究对象进行结构优化。首先基于密度法中的SIMP法,以质量为优化目标,运用ANSYS/Workbench对摇架进行3次拓扑优化,得到了摇架的拓扑结构;其次针对摇架的拓扑结构继续进行尺寸优化,以摇架的上板宽d1、下板前段宽d2、下板后段与前段的宽度差d3为设计变量,质量为优化目标,建立摇架尺寸优化数学模型;最后基于遗传算法进行尺寸优化,得到3组最优解,通过瞬态分析方法,计算出舰炮发射时摇架的最大位移,从3组解中确定出摇架的最优结构。结果表明:经过结构优化后,摇架的质量减小3.014%,优化后的摇架最大位移较之前减小0.350 21 mm。
Abstract:
In order to improve the vibration performance of large caliber naval gun rocker and meet the requirements of lightweight structure design, the cradle was taken as the research object to optimize the structure. Firstly, based on the SIMP method in the density method, taking quality as the optimization goal, the topological structure of the cradle was optimized three times by using ANSYS/Workbench. The second step was the size optimization of the cradle, taking the upper plate width d1, the lower plate’s front section width d2, the width difference between the lower plate’s back section and the front section d3 as the design variables, and quality as the optimization goal. The mathematical model of cradle size optimization was established. Finally, the size optimization was done based on genetic algorithm, three groups of optimal solutions were obtained. The maximum displacement of the shaker was calculated by transient analysis method, and the optimal structure of the rocker was determined from the three sets of solutions. The results showed that after structural optimization, the mass of the rocker was reduced by 3.014%, and the maximum displacement of the optimized rocker was reduced by 0.350 21 mm.

参考文献/References:

[1] 张新建, 顾克秋, 刘更喜. 某火炮上架多工况拓扑优化设计[J]. 火炮发射与控制学报, 2019, 40(3): 56-60
[2] 李志旭, 杨国来, 葛建立. 考虑材料特性参数误差的某火炮摇架多目标优化[J]. 南京理工大学学报, 2017, 41(6): 671-675
[3] 萧辉, 杨国来, 孙全兆, 等. 基于自适应神经网络的火炮身管结构优化研究[J]. 兵工学报, 2017, 38(10): 1873-1880
[4] 周乐, 杨国来, 葛建立, 等. 基于遗传算法的火炮反后坐装置结构多目标优化研究[J]. 兵工学报, 2015, 36(3): 433-436
[5] 王明真. 轻型火炮大架的优化设计[D]. 南京: 南京理工大学, 2005.
[6] 孙明颜. 某型火炮摇架结构优化分析[D]. 太原: 中北大学, 2016.
[7] 岳炯, 于存贵, 汪国梁. 基于响应面法的某火箭炮结构参数优化[J]. 兵工自动化, 2015(9): 83-86
[8] 蔡文勇. 大口径车载火炮多柔体动力学与总体优化研究[D]. 南京: 南京理工大学, 2009.
[9] 杜春江. 连续体结构拓扑优化理论及其在炮塔结构设计中的应用研究[D]. 南京: 南京理工大学, 2008.
[10] 边海关, 葛建立, 杨国来. 大口径火炮高刚度上架优化设计[J]. 机械制造与自动化, 2013, 42(4): 32-35
[11] 范林盛, 刘树华, 曹广群, 等. 多工况下某火炮摇架拓扑优化设计[J]. 兵工自动化, 2016, 35(8): 22-24
[12] 张鑫磊, 顾克秋, 张志军. 某轻型牵引炮摇架结构动态优化设计[J]. 兵器装备工程学报, 2016, 37(1): 48-51
[13] 朱家萱, 潘玉田, 孙明颜. 某型火炮摇架结构拓扑优化设计[J]. 兵工自动化, 2017, 36(6): 17-20,36
[14] SIGMUND. On the design of compliant mechanisms using topology optimization[J]. Journal of structural mechanics, 1997, 25(4): 493-524.
[15] BENNAGE W A, DHINGRA A K. Single and multiobjective structural optimization in discrete、ontinuous variables using simulated annealing[J]. International journal for numerical methods in engineering, 1995, 38(16): 2753-2773.
[16] LAGAROS N D, PAPADRAKAKIS M, KOKOSSALAKIS G. Structural optimization using evolutionary algorithms[J]. Computers and structures, 2002, 80(7/8): 571-589.
[17] SOBIESZCZANSKI-SOBIESKI J, JAMES B B, DOVI A R. Structural optimization by multilevel decomposition[J]. Aiaa journal, 2012, 23(11): 1775-1782.
[18] SVANBERG K. The method of moving asymptotes - a new method for structural optimization[J]. International journal for numerical methods in engineering, 1987, 24(2): 359-373.
[19] GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with computers, 2013, 29(2): 245-245.
[20] 顾元宪, 程耿东. 计算机辅助结构优化设计软件MCADS的开发与应用[J]. 计算力学学报, 1995, 12(3): 304-307
[21] 叶元烈, 秦东晨. 薄壁覆盖件的结构优化设计[J]. 机械强度, 1999, 21(3): 182-185
[22] 黄康, 张宏梅, 陈科, 许志伟. 人工神经网络在结构优化设计中的应用[J]. 机械设计, 2004, 21(12): 18-20
[23] 王春会. 连续体结构拓扑优化设计[D]. 西安: 西北工业大学, 2005.
[24] 罗震, 陈立平, 黄玉盈, 等. 连续体结构的拓扑优化设计[J]. 力学进展, 2004, 34(4): 463-476

相似文献/References:

[1]古青波,胡胜海,魏禹,等.基于速度矩阵法的舰炮多体发射系统动态响应分析[J].应用科技,2012,39(02):53.[doi:10.3969/j.issn.1009-671X. 201111017]
 GU Qingbo,HU Shenghai,WEI Yu,et al.Dynamic response analysis of a naval gun multi-body launching system based on the speed matrix method[J].Applied science and technology,2012,39(1):53.[doi:10.3969/j.issn.1009-671X. 201111017]
[2]富威,崔运山,吴琼,等.考虑间隙的摆弹机构动力学特性分析与仿真[J].应用科技,2019,46(01):104.[doi:10.11991/yykj.201804013]
 FU Wei,CUI Yunshan,WU Qiong,et al.Analysis and simulation of dynamic characteristics of ammunition-swing mechanism considering clearance[J].Applied science and technology,2019,46(1):104.[doi:10.11991/yykj.201804013]

备注/Memo

备注/Memo:
收稿日期:2019-11-17。
作者简介:富威,男,副教授,博士;龚军军,男,硕士研究生
通讯作者:龚军军,E-mail:1605435268@qq.com
更新日期/Last Update: 2020-05-29