[1]张文升,王立国,孟凡旺.基于嵌套窗口的高光谱图像目标检测[J].应用科技,2009,36(05):12-15.[doi:10.3969/j.issn.1009-671X.2009.05.004]
 ZHANG Wen-sheng,WANG Li-guo,MENG Fan-wang.Nested spatial window based target detection for hyperspectral images[J].Applied science and technology,2009,36(05):12-15.[doi:10.3969/j.issn.1009-671X.2009.05.004]
点击复制

基于嵌套窗口的高光谱图像目标检测
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第36卷
期数:
2009年05期
页码:
12-15
栏目:
现代电子技术
出版日期:
2009-05-05

文章信息/Info

Title:
Nested spatial window based target detection for hyperspectral images
文章编号:
1009-671X(2009)05-0012-04
作者:
张文升 王立国 孟凡旺
哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
Author(s):
ZHANG Wen-shengWANG Li-guoMENG Fan-wang
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像目标检测嵌套窗口特征空间分解
Keywords:
hyperspectral images target detection nested spatial window eigenspace separation transform
分类号:
TN919
DOI:
10.3969/j.issn.1009-671X.2009.05.004
文献标志码:
A
摘要:
针对经典RX检测算法所存在的窗口分析方式的不足,提出一种基于嵌套窗口分析的高光谱图像小目标检测算法,并将这种嵌套方式应用到线性RX、非线性核特征向量空间分解(KEST)算法之中,对不同窗口方式的检测算法以及非线性判别分析检测算法进行了详尽的对比分析.实验表明,在3层嵌套窗口下的文中算法能够获得更好的目标检测效果.
Abstract:
Aiming at classic RX algorithm’s insufficiency of window analysis, an algorithm for small target detection in hyperspectral imaging based on the nested spatial window analysis was proposed and applied to the algorithms of linear RX and nonlinear KEST. And then different window detection algorithms and nonlinear KFDA were compared and analyzed. The experiment proves that this algorithm can improve the effect of small target detection in threelayer nested spatial windows.

参考文献/References:

[1]REED I S,YU X. Adaptive multipleband CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans on Acoustic, Speech Signal Process,1990, 38(10):17601770.
[2]KWON H, DER S Z, NASRABADI NM. Adaptive anomaly detection using subspace separation for hyperspectral imagery[J]. Opt Eng,2003, 42(11): 3342-3351.
[3]PLETT G L, DOI T, TORRIERI D. Mine detection using scattering parameters and an artificial neural network[J]. IEEE Trans Neural Networks, 1997, 8(6): 1456-1467. 
[4]LIU Weimin, CHANG Cheini. A nested spatial windowbased approach to target detection for hyperspectral imagery[J]. IEEE,2004.
[5]TAYLOR J S, CRISTIANINI N. Kernel methods for pattern analysis\[M\]. Cambridge: Cambridge University, 2004.
\[6\]SCHOLKOPF B, SMOLA A J. Learning with kernels\[M\].Cambridge: MIT Press, 2002.

相似文献/References:

[1]王立国,邓禄群,张晶.改进的SGA端元选择的快速方法[J].应用科技,2010,37(04):19.[doi:1009-671X (2010) 04-0019-04]
 WANG Li-guo,DENG Lu-qun,ZHANG Jing.A fast endmember selection method based on simplex growing algorithm[J].Applied science and technology,2010,37(05):19.[doi:1009-671X (2010) 04-0019-04]
[2]王立国,赵妍,王群明.基于POCS的高光谱图像超分辨率方法[J].应用科技,2010,37(10):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
 WANG Li-guo,ZHAO Yan,WANG Qun-ming.POCS based super-resolution method for hyperspectral imagery[J].Applied science and technology,2010,37(05):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
[3]徐俊红,李金,从望,等.基于静态背景下的视频多目标运动物体的提取[J].应用科技,2005,32(03):31.
[4]杨桄1,张俭峰1,赵波2,等.基于 PCA 和 KRX 算法的高光谱异常检测[J].应用科技,2014,41(05):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
 ,,et al.Anomaly detection based on PCA and KRX in hyperspectral images[J].Applied science and technology,2014,41(05):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
[5]赵群.基于混合高斯模型的运动目标检测算法[J].应用科技,2015,42(01):19.
 ZHAO Qun.Moving object detection algorithm based on Gaussian mixture model[J].Applied science and technology,2015,42(05):19.
[6]谢红,原博,解武.LK光流法和三帧差分法的运动目标检测算法[J].应用科技,2016,43(03):23.[doi:10.11991/yykj.201507021]
 XIE Hong,YUAN Bo,XIE Wu.Moving target detection algorithm based on LK optical flow and three-frame difference method[J].Applied science and technology,2016,43(05):23.[doi:10.11991/yykj.201507021]
[7]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
 WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].Applied science and technology,2017,44(05):12.[doi:10.11991/yykj.201606010]
[8]王霖郁,刘一博.基于光谱角匹配加权的高光谱图像异常检测[J].应用科技,2017,44(06):20.[doi:10.11991/yykj.201610010]
 WANG Linyu,LIU Yibo.Anomaly detection for hyperspectral image based on weighted spectral angle match[J].Applied science and technology,2017,44(05):20.[doi:10.11991/yykj.201610010]
[9]崔颖,王雪婷,刘述彬,等.基于改进SPA算法的高效降维方法[J].应用科技,2018,45(05):51.[doi:10.11991/yykj.201712002]
 CUI Ying,WANG Xueting,LIU Shubin,et al.An efficient reduction method based on the improved successive projection algorithm[J].Applied science and technology,2018,45(05):51.[doi:10.11991/yykj.201712002]
[10]赵春晖,王楠楠.基于背景抑制及顶点成分分析的[J].应用科技,2009,36(09):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
 ZHAO Chun hui,WANG Nan nan.Anomaly detection of hyperspectral imagery based on background restrain and VCA[J].Applied science and technology,2009,36(05):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]

备注/Memo

备注/Memo:
基金项目:中国博士后科学基金一等资助项目(20070420156).
作者简介:张文升(1981-),男,硕士研究生,主要研究方向:高光谱图像目标检测,E-mail:solaradam@163.com.
更新日期/Last Update: 2009-05-08