[1]徐伟,张帅,王克家.拉曼光谱预处理中几种小波去噪方法的分析[J].应用科技,2009,36(11):27-31.[doi:10.3969/j.issn.1009-671X.2009.11.007]
 XU Wei,ZHANG Shuai,WANG Ke-jia.Denoising of raman spectra based on wavelet transform[J].Applied science and technology,2009,36(11):27-31.[doi:10.3969/j.issn.1009-671X.2009.11.007]
点击复制

拉曼光谱预处理中几种小波去噪方法的分析
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第36卷
期数:
2009年11期
页码:
27-31
栏目:
现代电子技术
出版日期:
2009-11-25

文章信息/Info

Title:
Denoising of raman spectra based on wavelet transform
文章编号:
1009-671X(2009)11-0027-05
作者:
徐伟张帅王克家
(哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001)
Author(s):
XU WeiZHANG ShuaiWANG Ke-jia
(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
关键词:
拉曼光谱小波变换去噪模极大值
Keywords:
Raman spectra wavelet transform denoising modulus maxima
分类号:
TN911.7
DOI:
10.3969/j.issn.1009-671X.2009.11.007
文献标志码:
A
摘要:
拉曼光谱分析中,噪声的存在常影响分析的准确度和检测限.以钙长石的拉曼光谱为研究对象,探讨小波变换在拉曼光谱信号去噪方面的应用,分别采用移动窗口最小二乘多项式平滑、移动窗口中位数平滑、非线性小波软硬阈值法和小波变换模极大值法对加噪后的拉曼光谱进行去噪并对去噪效果进行比较.结果表明,小波变换模极大值光谱去噪法得到了较高的信噪比,小波软硬阈值法次之,其他2种方法去噪效果较差.小波变换模极大值法能够有效去除光谱噪声,并很好地保留了光谱信号特征,为拉曼光谱的校正模型的建立奠定了良好的基础.
Abstract:
During the spectrum analysis process, noise usually influences the analytical accuracy and the detection limit. Taking the Raman spectra of anorthite as the research object, the application of wavelet denoising to Raman spectra was discussed. SavitzkyGolay smoothing, moving window median smoothing, the nonlinear wavelet soft and hard threshold denoising method and wavelet transform modulus maxima method were applied respectively to pure Raman spectra with added noise, the performance of these wavelet denoising methods was compared. The results show that the wavelet transform modulus maxima method obtained a high signal to noise ratio, followed by the soft and hard threshold wavelet method. The other two methods were less effective. Wavelet transform modulus maxima method is able to eliminate spectroscopic noises and interferences while reserving major information. It contributes to the foundation of Raman spectra correction model.

参考文献/References:

[1]陈玉伦. 拉曼光谱仪的研制及预处理方法研究[D].杭州:浙江大学,2006.
[2]DONOHO D L, JOHNSTON I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81(12):425-455.
[3]DONOHN D L. De-noising by softthresholding[J]. IEEE Trans on IT,1995,41(3):613627.
[4]DINIHO D L, JOHNSTON I M. Adapting to unknown smoothness via wavelet shrinkage[J].Journal of American Stat Assoc,1955,12(90):1200-1224.
[5]郭晓霞,杨慧中. 小波去噪中软硬阈值的一种改良折衷法[J].光谱学与光谱分析,2006,26(10):1838-1841.
[6]李洋,钟诗胜,朱锐. 多分辨小波过程神经网络及其应用研究 [J].智能系统学报,2008,3(3):211-215.
[7]潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用[M].北京:清华大学出版社,2005.
[8]陈柳.拉曼光谱系统设计及基于遗传算法的光谱数据分析研究[D].武汉:华中师范大学,2004.
[9]ALSBERG B K, WOODWARD A M, WINSON M K, et al. Wavelet denoising of infrared spectra[J].Analyst, 1997,122(7):645-652.
[10]郝勇,陈斌,朱锐. 近红外光谱预处理中几种小波消噪方法的分析[J].光谱学与光谱分析,2006,26(10):1838-1841.

相似文献/References:

[1]王鹏飞,张兴周,胡文飞.基于小波变换的火车车轮扁疤信号能量分析[J].应用科技,2009,36(06):25.
 WANG Peng-fei,ZHANG Xing zhou,HU Wen-fei.he energy analysis of wheelflat signal based on wavelet transform[J].Applied science and technology,2009,36(11):25.
[2]陈立伟,王文姝,袁頔.自适应高斯混合模型语音增强方法[J].应用科技,2009,36(07):11.[doi:doi:10.3969/j.issn.1009-671X.2009.07.004]
 CHEN Li-wei,WANG Wen-shu,YUAN Di.A speech enhancement method based on adaptive Gaussian mixture model[J].Applied science and technology,2009,36(11):11.[doi:doi:10.3969/j.issn.1009-671X.2009.07.004]
[3]席志红,金甲,肖易寒.一种改进的基于小波偏微分方程的图像去噪方法[J].应用科技,2010,37(01):12.[doi:3969/j.issn.1009-671X.2010.01.007]
 XI Zhi-hong,JIN Jia,XIAO Yi-han.An improved algorithm for image noise removal based on wavelet transform and partial differential equations[J].Applied science and technology,2010,37(11):12.[doi:3969/j.issn.1009-671X.2010.01.007]
[4]席志红,郭亮,肖易寒.一种基于Contourlet变换的图像边缘检测方法[J].应用科技,2010,37(04):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
 XI Zhi-hong,GUO Liang,XIAO Yi-han.An image edge detection scheme based on Contourlet transform[J].Applied science and technology,2010,37(11):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
[5]佘科,谢红.基于WNN的双目摄像机标定方法[J].应用科技,2010,37(11):35.[doi:10.3969/j.issn.1009-671X.2010.11.009]
 SHE Ke,XIE Hong.Camera calibration of binocular vision system based on wavelet neural network[J].Applied science and technology,2010,37(11):35.[doi:10.3969/j.issn.1009-671X.2010.11.009]
[6]徐伟,马兆铭,张帅,等.基于液芯光纤的水中甲烷拉曼检测技术[J].应用科技,2011,38(01):26.[doi:10.3969/j.issn.1009-671X.2011.01.007]
 XU Wei,MA Zhaoming,ZHANG Shuai,et al.Raman detection technologies of methane in water based on liquid core optical fiber[J].Applied science and technology,2011,38(11):26.[doi:10.3969/j.issn.1009-671X.2011.01.007]
[7]孙明珠,盖强.基于双阈值小波变换在雷达测试数据处理中的应用[J].应用科技,2011,38(04):57.[doi:doi:10.3969/j.issn.1009-671X.2011.04.13]
 SUN Mingzhu,GAI Qiang.The application of dual threshold wavelet transform in data processing of radar test data[J].Applied science and technology,2011,38(11):57.[doi:doi:10.3969/j.issn.1009-671X.2011.04.13]
[8]钟山,孙凤,丁福光,等.基于中值滤波的全垫升气垫船运动仿真参数滤波方法研究[J].应用科技,2005,32(01):31.
 ZHONG Shan,SUN Feng,DING Fuguang,et al.Air cushion vehicle signal de—noising methods based on Daubechies wavelet and median filter[J].Applied science and technology,2005,32(11):31.
[9]李 佶,付永庆,王咏胜.一种基于模糊聚类的小波图像压缩方法[J].应用科技,2005,32(03):3.
 LI Ji,FU Yong-qing,WANG Yong-sheng.Wavelet image compression based on potential fuzzy clustering[J].Applied science and technology,2005,32(11):3.
[10]赵春晖,王克成,陈万海.一种基于小波变换的超光谱图像融合方法[J].应用科技,2005,32(09):1.

更新日期/Last Update: 2009-12-25