[1]王立国,邓禄群,张晶.改进的SGA端元选择的快速方法[J].应用科技,2010,37(04):19-22.[doi:1009-671X (2010) 04-0019-04]
 WANG Li-guo,DENG Lu-qun,ZHANG Jing.A fast endmember selection method based on simplex growing algorithm[J].yykj,2010,37(04):19-22.[doi:1009-671X (2010) 04-0019-04]
点击复制

改进的SGA端元选择的快速方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第37卷
期数:
2010年04期
页码:
19-22
栏目:
现代电子技术
出版日期:
2010-04-25

文章信息/Info

Title:
A fast endmember selection method based on simplex growing algorithm
文章编号:
10.3969/j.issn.1009-671X.2010.04.005
作者:
王立国邓禄群张晶
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
WANG Li-guo DENG Lu-qun ZHANG Jing
College of Information and Communication Engineering, Harbin engineering University, Harbin 150001, China
关键词:
高光谱图像端元选择SGA距离比较
Keywords:
hyperspectral imagery (HSI) endmember selection simplex growing algorithm (SGA) distance comparison
分类号:
TP75
DOI:
1009-671X (2010) 04-0019-04
文献标志码:
A
摘要:
SGA算法因其自动性和高效性受到广泛欢迎,针对该算法包含大量的体积计算导致该算法的运算速度较慢的问题,采用在高维空间中构造超平面的方法,提出了一种SGA的改进方法.该改进算法把复杂的体积比较转化成简单的点到超平面的距离比较,从而将算法的复杂度由空间维度的3次关系降至线性关系.实验表明,快速SGA与原始SGA在端元选择的结果上保持一致,而在端元选择的速度上前者较后者有大幅度提高,尤其是要选择的端元数目越大时,效果越明显.
Abstract:
SGA has been a popular one for its full automation and highefficiency performance. An improved SGA method was proposed and a method of constructing a hyperplane was adopted in the highdimensional space, for the purpose of improving a low speed algorithm which involves innumerable volume calculation and thus leads to low speed of calculation. Complex volume comparison was converted to simple comparison of the distance from a point to a hyperplane in this improved method. As a result, the complexity of fast SGA is reduced to linear in space dimensionality, from former cubic in original SGA. Experiments show that the fast SGA has the same selection result as original SGA, while the former runs greatly faster than the latter in terms of endmember selection speed.

参考文献/References:

[1]王永良. 空间谱估计理论与算法[M]. 北京:清华大学出版社,2004.
[2]SHAO M, NIKIAS C L. Signal processing with alpha stable distributions and applications [M]. New York: Wiley, 1995.
[3]LIU T H, MENDEL J M. A subspacebased direction finding algorithm using fractional lower order statistics[J]. IEEE Trans Signal Processing, 2001, 49: 1605-1613.
[4]ZHA Dai-feng, QIU Tian-Shuang. Underwater sources location in non-Gaussian impulsive noise environments[J]. Digital Signal Processing, 2006,16(2): 149-163.
[5]PANAGIOTIS T. Maximum likelihood localization of sources in noise modeled as αstable process[J]. IEEE Trans Signal Processing ,1995, 43: 2700-2713.
[6]何劲, 刘中. 利用分数低阶空时矩阵进行冲击噪声环境的DOA估计[J]. 航空学报,2006(1): 104-108.
[7]李洪升,杨日杰,何友,等. 冲击噪声背景下相干信源DOA估计方法研究[J]. 微波学报, 2008,24(3):82-86.

相似文献/References:

[1]张文升,王立国,孟凡旺.基于嵌套窗口的高光谱图像目标检测[J].应用科技,2009,36(05):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
 ZHANG Wen-sheng,WANG Li-guo,MENG Fan-wang.Nested spatial window based target detection for hyperspectral images[J].yykj,2009,36(04):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
[2]赵春晖,王楠楠.基于背景抑制及顶点成分分析的[J].应用科技,2009,36(09):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
 ZHAO Chun hui,WANG Nan nan.Anomaly detection of hyperspectral imagery based on background restrain and VCA[J].yykj,2009,36(04):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
[3]王立国,赵妍,王群明.基于POCS的高光谱图像超分辨率方法[J].应用科技,2010,37(10):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
 WANG Li-guo,ZHAO Yan,WANG Qun-ming.POCS based super-resolution method for hyperspectral imagery[J].yykj,2010,37(04):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
[4]杨桄1,张俭峰1,赵波2,等.基于 PCA 和 KRX 算法的高光谱异常检测[J].应用科技,2014,41(05):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
 ,,et al.Anomaly detection based on PCA and KRX in hyperspectral images[J].yykj,2014,41(04):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
[5]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
 WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].yykj,2017,44(04):12.[doi:10.11991/yykj.201606010]
[6]王霖郁,刘一博.基于光谱角匹配加权的高光谱图像异常检测[J].应用科技,2017,44(06):20.[doi:10.11991/yykj.201610010]
 WANG Linyu,LIU Yibo.Anomaly detection for hyperspectral image based on weighted spectral angle match[J].yykj,2017,44(04):20.[doi:10.11991/yykj.201610010]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(60802059), 教育部博士点新教师基金资助项目(200802171003), 水下智能机器人技术国防科技重点实验室联合资助项目.
作者简介:王立国(1974-),男,教授,研究方向:遥感图像处理技术、模式识别与机器学习理论, E-mail:wangliguo@hrbeu.edu.cn.
更新日期/Last Update: 2010-05-05