[1]王立国,赵妍,王群明.基于POCS的高光谱图像超分辨率方法[J].应用科技,2010,37(10):26-30.[doi:10.3969/j.issn.1009-671X.2010.10.007]
 WANG Li-guo,ZHAO Yan,WANG Qun-ming.POCS based super-resolution method for hyperspectral imagery[J].yykj,2010,37(10):26-30.[doi:10.3969/j.issn.1009-671X.2010.10.007]
点击复制

基于POCS的高光谱图像超分辨率方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第37卷
期数:
2010年10期
页码:
26-30
栏目:
现代电子技术
出版日期:
2010-10-05

文章信息/Info

Title:
POCS based super-resolution method for hyperspectral imagery
文章编号:
1009-671X (2010) 10-0026-05
作者:
王立国 赵妍 王群明
(哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001)
Author(s):
WANG Li-guoZHAO YanWANG Qun-ming
(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
关键词:
高光谱图像超分辨率凸集投影(POCS)光谱端元(端元)
Keywords:
高光谱图像超分辨率凸集投影(POCS)光谱端元(端元)
分类号:
TP75
DOI:
10.3969/j.issn.1009-671X.2010.10.007
文献标志码:
A
摘要:
高光谱图像得到了越来越广泛的应用,但较低的空间分辨率严重地影响着它的应用效果,其超分辨率方法受到学术界的高度重视,但一直没有得到很好的解决.为此,建立低分辨率资源图像与高分辨率目标图像之间的关系模型;引入关联感兴趣光谱端元的算子进行空间变换;应用凸集投影(POCS)算法实现超分辨率复原.实验表明,该超分辨率方法具有超分辨率效果好、复杂度低、抗噪声性能强和保护感兴趣类别等优点.
Abstract:
高光谱图像得到了越来越广泛的应用,但较低的空间分辨率严重地影响着它的应用效果,其超分辨率方法受到学术界的高度重视,但一直没有得到很好的解决.为此,建立低分辨率资源图像与高分辨率目标图像之间的关系模型;引入关联感兴趣光谱端元的算子进行空间变换;应用凸集投影(POCS)算法实现超分辨率复原.实验表明,该超分辨率方法具有超分辨率效果好、复杂度低、抗噪声性能强和保护感兴趣类别等优点.

参考文献/References:

[1] HARRIS J L. Diffraction and resolving power[J]. Journal of the Optical Society of America, 1964, 2(2): 31-36.
[2]HUANG T S, TSAI R. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing 1984, 10(2): 317-339.
[3]STARK H, OSKOUI P. Highresolution image recovery from imageplane arrays, using convex projections[J]. JOSA, 1989, 3(8): 115-126.
[4]RUSFORTH C K. In image reconstruction, theory and application\M]. New York :Academic Press, 1987, 313-323.
[5]RICHARDSON W H. Bayesianbased iterative method of image restoration[J]. J O S A, 1972, 62: 55-60.
[6]WALD L, RANCHIN T, MANGOLINI M. Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images[J]. Photogrammetric Engineering & Remote Sensing, 1997, 63(6): 691-699.
[7]YOCKY A A. Multiresolution wavelet decomposition image merger of Landsat thematic mapper and SPOT panchromatic data[J]. PE&RS, 1996,62(9): 1067-1074.
[8]AIAZZI B, ALPARONE L, BARDUCCI A, et al. Multispectral fusion of multisensor image data by the generalized Laplacian pyramid[C]// IEEE International Geoscience and Remote Sensing Symposium. Hamburg, 1999: 1183-1185.
[9]GAVIN J, JENNISON C. A subpixel image restoration algorithm[J]. J Computational and Graphical Statistics, 1997, 6: 182-201.
[10]TATEM A J, LEWIS H G, ATKINSON P M, NIXON M S. Superresolution land cover pattern prediction using a Hopfield neural network[J]. Remote Sensing of Environment, 2002, 79, 1-14.
[11] ATKINSON P M. Mapping subpixel boundaries from remotely sensed images[M]. Lonon:Taylor and Francis. 1997: 166-180.
[12] VERHOEYE J, ROBERT D W. Land cover mapping at subpixel scales using linear optimization techniques[J]. Remote Sensing of Environment 2002, 79(1): 96-104. [13] HU M, TAN J Q, ZHAO Q J. Aptive rational image interpolation based on local gradient features[J]. Journal of Information and Computational Science, 2007(4): 59-67. 
[14] RAY A, NURUL K. 3D interpolation of irregular data with a POCS algorithm\[J\]. Geophysics, 2006,71(6): E91-E9.
 [15] JENG S W, TSAI W H. Improving quality of unwarped omniimages with irregularlydistributed unfilled pixels by a new edgepreserving interpolation technique[J]. Pattern Recognition Letters, 2007(28): 1926-1936.

相似文献/References:

[1]张文升,王立国,孟凡旺.基于嵌套窗口的高光谱图像目标检测[J].应用科技,2009,36(05):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
 ZHANG Wen-sheng,WANG Li-guo,MENG Fan-wang.Nested spatial window based target detection for hyperspectral images[J].yykj,2009,36(10):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
[2]赵春晖,王楠楠.基于背景抑制及顶点成分分析的[J].应用科技,2009,36(09):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
 ZHAO Chun hui,WANG Nan nan.Anomaly detection of hyperspectral imagery based on background restrain and VCA[J].yykj,2009,36(10):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
[3]王立国,邓禄群,张晶.改进的SGA端元选择的快速方法[J].应用科技,2010,37(04):19.[doi:1009-671X (2010) 04-0019-04]
 WANG Li-guo,DENG Lu-qun,ZHANG Jing.A fast endmember selection method based on simplex growing algorithm[J].yykj,2010,37(10):19.[doi:1009-671X (2010) 04-0019-04]
[4]杨桄1,张俭峰1,赵波2,等.基于 PCA 和 KRX 算法的高光谱异常检测[J].应用科技,2014,41(05):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
 ,,et al.Anomaly detection based on PCA and KRX in hyperspectral images[J].yykj,2014,41(10):11.[doi:10.3969 / j.issn.1009⁃671X.201312002]
[5]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
 WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].yykj,2017,44(10):12.[doi:10.11991/yykj.201606010]
[6]王霖郁,刘一博.基于光谱角匹配加权的高光谱图像异常检测[J].应用科技,2017,44(06):20.[doi:10.11991/yykj.201610010]
 WANG Linyu,LIU Yibo.Anomaly detection for hyperspectral image based on weighted spectral angle match[J].yykj,2017,44(10):20.[doi:10.11991/yykj.201610010]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(60802059), 教育部博士点新教师基金资助项目(200802171003).
作者简介:王立国(1974-),男,教授,博士生导师,主要研究方向:遥感图像处理技术、模式识别与机器学习理论, E-mail:wangliguo@hrbeu.edu.cn.
更新日期/Last Update: 2010-10-29