[1]佘科,谢红.基于WNN的双目摄像机标定方法[J].应用科技,2010,37(11):35-39.[doi:10.3969/j.issn.1009-671X.2010.11.009]
 SHE Ke,XIE Hong.Camera calibration of binocular vision system based on wavelet neural network[J].Applied science and technology,2010,37(11):35-39.[doi:10.3969/j.issn.1009-671X.2010.11.009]
点击复制

基于WNN的双目摄像机标定方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第37卷
期数:
2010年11期
页码:
35-39
栏目:
现代电子技术
出版日期:
2010-11-05

文章信息/Info

Title:
Camera calibration of binocular vision system based on wavelet neural network
文章编号:
1009-671X(2010)11-0035-05
作者:
佘科谢红
(哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001)
Author(s):
SHE Ke XIE Hong
(College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
关键词:
小波变换小波神经网络粒子群算法双目视觉摄像机标定
Keywords:
wavelet transform wavelet neural network particle swarm algorithm binocular vision camera calibration
分类号:
TP391
DOI:
10.3969/j.issn.1009-671X.2010.11.009
文献标志码:
A
摘要:
针对传统摄像机标定方法需要建立复杂的数学模型,且计算量大、实时性不好的问题,引入了人工神经网络来有效处理非线性映射问题,准确地建立起立体视觉中三维空间特征点与它在图像平面上像点之间的非线性关系;但现有的神经网络标定法仍存在实时性差、标定精度不够、泛化能力差的缺点,于是该文提出了一种基于小波神经网络(wavelet neural network,WNN)的方法,同时用粒子群优化算法对学习算法进行改进,并对小波网络与BP网络的标定结果进行比较.实验结果表明,基于小波神经网络的双目视觉标定方法能够达到较高的实时性、标定精度和泛化能力的要求.
Abstract:
For the problems of needing many complicated mathematical models with large amount of calculation and bad realtime performance in the traditional methods for camera calibration, the artificial neural networks were introduced to deal with the problem of nonlinear mapping effectively, and create accurately the nonlinear relationship between the threedimensional feature point and its image point on the image plane. However, the existing calibration methods using neural networks still have the disadvantages of bad real time, poor calibration accuracy and generalization ability. So this paper proposed a method based on wavelet neural network, while using particle swarm optimization to improve learning algorithm, and compared the results of calibration with BP neural network method. Experimental results showed that camera calibration of binocular vision system based on wavelet neural network achieved a better real time, higher calibration accuracy and generalization capabilities.

参考文献/References:

[1]ZHANG Qinghua, ALBERT B. Wavelet networks[J].IEEE Trans on Neural Networks, 1992,3(6):889-898.
[2]LIU Sheng,FU Huixuan,WANG Yuchao.Camera calibration for stereo vision based on LSSVM[J]. OptoElectronic Engineering,2008,35(10):21-25.
[3]SONG Fanfan,SHENGGUO E. Camera calibration of binoeular vision 3D measurement system based on BP neural network[J]. Chinese Journal of Scientific Instrument,2008,29(8):263-267.
[4]傅其凤,崔彦平.双目视觉摄像机神经网络标定方法[J].工程图学学报,2005,6:93-97.
[5]温奎. 基于立体视觉的移动机器人目标定位[D].南京:南京理工大学,2006.
[6]冯再勇.小波神经网络与BP网络的比较研究及应用[D].成都:成都理工大学,2007.
[7]WANG Xiaodong,YE Meiying,WANG Xia,et al. Binocular vision sensor modeling based on neural network[J]. Optical Instruments,2002,24(45):42-46. [8]SZU H H,TELFER B, KADAMBE B.Neural network adaptive wavelets for signal representation and classification[J].Optical Engineering,1992,31(9):1906-1907.
[9]罗光坤.Morlet小波变换理论与应用研究及软件实现[D].南京:南京航空航天大学,2007.
[10]毛鸿伟,潘宏侠,刘文礼.基于粒子群优化的小波神经网络及其在齿轮箱故障诊断中的应用[J].振动与冲击,2007,26(5):133-136.

相似文献/References:

[1]王鹏飞,张兴周,胡文飞.基于小波变换的火车车轮扁疤信号能量分析[J].应用科技,2009,36(06):25.
 WANG Peng-fei,ZHANG Xing zhou,HU Wen-fei.he energy analysis of wheelflat signal based on wavelet transform[J].Applied science and technology,2009,36(11):25.
[2]陈立伟,王文姝,袁頔.自适应高斯混合模型语音增强方法[J].应用科技,2009,36(07):11.[doi:doi:10.3969/j.issn.1009-671X.2009.07.004]
 CHEN Li-wei,WANG Wen-shu,YUAN Di.A speech enhancement method based on adaptive Gaussian mixture model[J].Applied science and technology,2009,36(11):11.[doi:doi:10.3969/j.issn.1009-671X.2009.07.004]
[3]徐伟,张帅,王克家.拉曼光谱预处理中几种小波去噪方法的分析[J].应用科技,2009,36(11):27.[doi:10.3969/j.issn.1009-671X.2009.11.007]
 XU Wei,ZHANG Shuai,WANG Ke-jia.Denoising of raman spectra based on wavelet transform[J].Applied science and technology,2009,36(11):27.[doi:10.3969/j.issn.1009-671X.2009.11.007]
[4]席志红,金甲,肖易寒.一种改进的基于小波偏微分方程的图像去噪方法[J].应用科技,2010,37(01):12.[doi:3969/j.issn.1009-671X.2010.01.007]
 XI Zhi-hong,JIN Jia,XIAO Yi-han.An improved algorithm for image noise removal based on wavelet transform and partial differential equations[J].Applied science and technology,2010,37(11):12.[doi:3969/j.issn.1009-671X.2010.01.007]
[5]席志红,郭亮,肖易寒.一种基于Contourlet变换的图像边缘检测方法[J].应用科技,2010,37(04):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
 XI Zhi-hong,GUO Liang,XIAO Yi-han.An image edge detection scheme based on Contourlet transform[J].Applied science and technology,2010,37(11):35.[doi:10.3969/j.issn.1009-671X.2010.04.009]
[6]孙明珠,盖强.基于双阈值小波变换在雷达测试数据处理中的应用[J].应用科技,2011,38(04):57.[doi:doi:10.3969/j.issn.1009-671X.2011.04.13]
 SUN Mingzhu,GAI Qiang.The application of dual threshold wavelet transform in data processing of radar test data[J].Applied science and technology,2011,38(11):57.[doi:doi:10.3969/j.issn.1009-671X.2011.04.13]
[7]钟山,孙凤,丁福光,等.基于中值滤波的全垫升气垫船运动仿真参数滤波方法研究[J].应用科技,2005,32(01):31.
 ZHONG Shan,SUN Feng,DING Fuguang,et al.Air cushion vehicle signal de—noising methods based on Daubechies wavelet and median filter[J].Applied science and technology,2005,32(11):31.
[8]李 佶,付永庆,王咏胜.一种基于模糊聚类的小波图像压缩方法[J].应用科技,2005,32(03):3.
 LI Ji,FU Yong-qing,WANG Yong-sheng.Wavelet image compression based on potential fuzzy clustering[J].Applied science and technology,2005,32(11):3.
[9]赵春晖,王克成,陈万海.一种基于小波变换的超光谱图像融合方法[J].应用科技,2005,32(09):1.
[10]李万臣,王 炼.基于小波变换和混合神经网络的图像压缩算法[J].应用科技,2006,33(01):29.
 LI Wan-chen,WANG L ian.An image compression algorithm based on wavelet transformation and mixed neural network[J].Applied science and technology,2006,33(11):29.

备注/Memo

备注/Memo:
作者简介:佘科(1986-),男,硕士研究生,主要研究方向:通信与信息系统,Email:sheke@hrbeu.edu.cn.
更新日期/Last Update: 2010-12-03