[1]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,38(04):19-23.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
 WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].Applied science and technology,2011,38(04):19-23.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
点击复制

“巨”型负磁导率材料的优化设计(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第38卷
期数:
2011年04期
页码:
19-23
栏目:
现代电子技术
出版日期:
2011-04-05

文章信息/Info

Title:
Optimal design of negative permeability material with “巨”
文章编号:
1009-671X (2011) 04-0019-05
作者:
王琦苏畅姜弢
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
WANG Qi SU Chang JIANG Tao
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
遗传算法神经网络左手材料负磁导率材料
Keywords:
genetic algorithm neural network lefthanded metamaterials negative permeability material
分类号:
TN914
DOI:
doi:10.3969/j.issn.1009-671X.2011.04.05
文献标志码:
A
摘要:
针对单回路“巨”型负磁导率材料结构和设计要求,基于神经网络和遗传算法理论进行了结构优化设计.通过正交实验法选出了负磁导率材料结构参数样本;利用HFSS得到的仿真实验样本对BP神经网络进行训练,建立了结构参数和结构性能之间的映射关系;根据设计要求定出相应的适应度函数表达式,经过遗传进化得到了优化的负磁导率材料结构参数.
Abstract:
In this paper, based on a research on the integrating of genetic algorithms (GA) and neural network (NN), and using them in the optimization of singlecircuit negative prAmeability material with a shape of Chinese character “ju”, we picked some samples by orthogonal experiment method and calculated the performance parameter with high frequency structure simulator (HFSS) and output the results, and then established the BP neural network model using the former results by HFSS to map the relation between the structure and the performance. After that, we used the GA to search the one satisfying our requirement, by adopting different fitness functions.

参考文献/References:

[1]冉立新,陈红胜,皇甫江涛. 异向介质研究进展[J]. 微波学报,2004, 20(3): 89-95.
[2] 潘攀,吴群,孟繁义. 一种微带左手传输线的精确分析方法[J].遥测遥控,2007, 28(5): 20-25.
[3] 陈国良.遗传算法及其应用[M].北京:人民邮电出版社,1999:32-36.
[4] BEAHOD K. A genetic approach[J]. European Journal of Operational Research, 1995, 8(4):645-661.
[5] 杨国良,吴旷怀. 利用BP 神经网络反算沥青路面结构层弹性模量的研究[J].中山大学学报,2008, 47(5): 53-57.
[6] 李蓉,王安国,吕英. 基于神经网络的新型缺陷接地结构优化设计[J]. 微波学报,2007, 23(9): 152-155.
[7] 魏海坤. 神经网络结构设计的理论与方法[M]. 北京:国防工业出版社,2005: 225-262.
[8] 刘永,张立毅. BP 和RBF 神经网络的实现及其性能比较[J].电子测量技术,2007, 30(4): 77-80.
[9] SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review, 2005, 71 (3): 36-37.

相似文献/References:

[1]姜弢,胡佳伟,侯艳丽.一种超宽带脉冲的设计新方法[J].应用科技,2008,35(12):11.
 JIANG Tao,HU Jia-wei,HOU Yan-li.A new approach to UWB pulse design[J].Applied science and technology,2008,35(04):11.
[2]严浙平,黄宇峰,李锋.遗传算法在AUV局部路径规划中的应用研究[J].应用科技,2009,36(02):46.
 YAN Zhe-ping,HUANG Yu-feng,LI Feng.Research on the application of genetic algorithm in localpath planning for AUV[J].Applied science and technology,2009,36(04):46.
[3]王帆,赵春晖,张志.基于克隆选择算法的人脸特征选择[J].应用科技,2009,36(03):11.
 WANG Fan,ZHAO Chun-hui,ZHANG Zh.Feature selection of face recognition based on genetic algorithm[J].Applied science and technology,2009,36(04):11.
[4]兰海,毛晓东,孙洪亮.STL在电网故障诊断遗传算法中的应用研究[J].应用科技,2009,36(09):56.[doi:10.3969/j.issn.1009-671X.2009.09.013]
 LAN Hai,MAO Xiao-dong,SUN Hong-liang.STL applied in genetic algorithm for fault diagnosis of power grid[J].Applied science and technology,2009,36(04):56.[doi:10.3969/j.issn.1009-671X.2009.09.013]
[5]杨雪娇,池海红.一种改进的光条中心提取方法[J].应用科技,2009,36(12):41.[doi:10.3969/j.issn.1009-671X.2009.12.011]
 YANG Xue-jiao,CHI Hai-hong.An improved method of extracting structured light strip center[J].Applied science and technology,2009,36(04):41.[doi:10.3969/j.issn.1009-671X.2009.12.011]
[6]杨奇,王福伟,何蕾,等.摆线针轮行星减速器最佳短幅系数的确定及优化[J].应用科技,2010,37(05):1.[doi:10.3969/j.issn.1009-671X.2010.05.001]
 YANG Qi,WANG Fu-wei,HE Lei,et al.Optimal value and optimal design of short width coefficient of cycloid pin gear planetary reducer[J].Applied science and technology,2010,37(04):1.[doi:10.3969/j.issn.1009-671X.2010.05.001]
[7]刘少刚,吕建伟,王士成.基于数据融合与神经网络的火灾探测研究[J].应用科技,2011,38(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
 LIU Shaogang,LV Jianwei,WANG Shicheng.A primitive study of fire detection method based on data fusion and BP neural network[J].Applied science and technology,2011,38(04):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
[8]石远鹏,姜建军,郑德宇,等.输电线路巡检的路径规划与建模[J].应用科技,2011,38(11):18.[doi:10.3969/j.issn.1009-671X.2011.18.004]
 SHI Yuanpeng,JIANG Jianjun,ZHENG Deyu,et al.Route planning and modeling of transmission lines inspection[J].Applied science and technology,2011,38(04):18.[doi:10.3969/j.issn.1009-671X.2011.18.004]
[9]王健峰,张磊,陈国兴,等.基于改进的网格搜索法的SVM参数优化[J].应用科技,2012,39(03):28.[doi:10.3969/j.issn.1009-671X.201112016]
 WANG Jianfeng,ZHANG Lei,CHEN Guoxing,et al.A parameter optimization method for an SVM based on improved grid search algorithm[J].Applied science and technology,2012,39(04):28.[doi:10.3969/j.issn.1009-671X.201112016]
[10]张文辉,胡小平,朱银发.自由漂浮空间机械臂基于神经网络的H∞鲁棒控制[J].应用科技,2012,39(06):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
 ZHANG Wenhui,HU Xiaoping,ZHU Yinfa.Neural network based H∞ robust control of free-floating space robot manipulators[J].Applied science and technology,2012,39(04):5.[doi:10.3969/j.issn.1009-671X.2012.201209005]
[11]陈立伟,黄璐,齐传斌.基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断[J].应用科技,2016,43(02):70.[doi:10.11991/yykj.201506026]
 CHEN Liwei,HUANG Lu,QI Chuanbin.Fault diagnosis for gas turbine blades based on the relevance vector machine optimized by genetic algorithm[J].Applied science and technology,2016,43(04):70.[doi:10.11991/yykj.201506026]
[12]张秋云,张营,李臣.遗传算法优化BP神经网络在中医按摩机器人中的应用[J].应用科技,2017,44(02):73.[doi:10.11991/yykj.201603018]
 ZHANG Qiuyun,ZHANG Ying,LI Chen.Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot[J].Applied science and technology,2017,44(04):73.[doi:10.11991/yykj.201603018]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(60902014);哈尔滨市创新人才基金资助项目(2009RFKXG010)
更新日期/Last Update: 2011-06-10