[1]韩晓东,刁鸣.冲击噪声背景下均匀圆阵相干信源的DOA估计[J].应用科技,2012,39(01):35-38.[doi:10.3969/j.issn.1009-671X. 201110008]
 HAN Xiaodong,DIAO Ming.DOA estimation of uniform circular array and coherent sources in an impulsive noise environment[J].Applied science and technology,2012,39(01):35-38.[doi:10.3969/j.issn.1009-671X. 201110008]
点击复制

冲击噪声背景下均匀圆阵相干信源的DOA估计(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年01期
页码:
35-38
栏目:
现代电子技术
出版日期:
2012-04-05

文章信息/Info

Title:
DOA estimation of uniform circular array and coherent sources in an impulsive noise environment
文章编号:
1009-671X(2012)01-0035-04
作者:
韩晓东 刁鸣
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
HAN Xiaodong DIAO Ming
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
冲击噪声模式空间变换空间平滑均匀圆阵DOA估计
Keywords:
impulsive noise mode space transformation spatial smoothing uniform circular array DOA estimation
分类号:
TN911.7
DOI:
10.3969/j.issn.1009-671X. 201110008
文献标志码:
A
摘要:
在对称α稳定分布噪声的假设下,现有的基于共变和分数低阶矩的MUSIC(即ROC-MUSIC和FLOM-MUSIC)方法不能用于均匀圆阵信源相干情况下的波达方向(DOA)估计. 为了解决这一问题,基于模式空间变换算法以及空间平滑算法的思想,结合ROC-MUSIC算法和FLOM-MUSIC算法,实现在冲击噪声背景下均匀圆阵相干信源的DOA估计. 仿真实验验证了该方法的有效性.
Abstract:
Within the conditions of impulsive noise fields modeled as symmetric α-stable distribution, the existed robust covariation(ROC) based MUSIC and fractional lower moment(FLOM) based MUSIC can not be used to estimate the DOA under these conditions. This study is based on the idea of the mode space transformation algorithm and the spatial smoothing algorithm, and the DOA estimation of uniform circular array and coherent sources in an impulsive noise environment is realized. Its validity is confirmed by computer simulation.

参考文献/References:

[1] WERON R. On the chambers-mallows-stuck method for simulating skewed stable random variables[J]. Statistics & Probability Letters,1996,28(2): 165-171.
[2] 冷文,王安国. 均匀圆阵来波方向的解模糊算法[J]. 天津大学学报, 2011, 44(2): 152-156.
[3] 高书彦,陈辉,王永良,等. 基于均匀圆阵的模式空间矩阵重构算法[J].电子与信息学报,2007,29(12):2832-2835.
[4] SHAO M, NIKIAS C L. Signal processing with alpha-stable distributions and applications[M]. New York: Wiley, 1995.
[5] 王永良. 空间谱估计理论与算法[M]. 北京:清华大学出版社, 2004: 78-105.
[6] TSAKALIDES P,NIKIAS C L. The robust covariation-based MUSIC(ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Trans on SP,1996, 44(7): 1623-1633.
[7] LIU T H,MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transon SP,2001, 49(8): 1605-1613.
[8] 杨海洋,王东进,陈卫东. 一种模式空间中的快速DOA估计算法[J]. 中国科学技术大学学报,2010, 40(8):771-775.
[9] 姚林宏, 高鹰, 石宇, 等. 冲击噪声背景下的虚拟空间平滑算法[J]. 吉林大学学报: 信息科学版,2011, 29(1): 47-50.
[10] 卢海杰,章新华,兰英. 基于模式空间的均匀圆阵方位估计性能研究[J]. 电声技术,2010, 34(8): 44-45.

相似文献/References:

[1]李忠念,刁鸣.基于均匀圆阵的循环平稳信号的DOA估计[J].应用科技,2012,39(03):20.[doi:10.3969/j.issn.1009-671X. 201112002]
 LI Zhongnian,DIAO Ming.DOA estimation of cyclostationary signals based on a uniform circular array[J].Applied science and technology,2012,39(01):20.[doi:10.3969/j.issn.1009-671X. 201112002]

备注/Memo

备注/Memo:
基金项目:黑龙江省科技攻关计划基金资助项目(GZ08A101).
作者简介:韩晓东(1988-), 男,硕士研究生,主要研究方向:空间谱估计,E-mail:hanxiaodong@hrbeu.edu.cn.
更新日期/Last Update: 2012-04-10