[1]王宝玉,等.融合人脸与步态周期模式的行人检测[J].应用科技,2012,39(01):44-50.[doi:10.3969/j.issn.1009-671X.201110010]
 WANG Baoyu,BEN Xianye,WANG Kejun.A pedestrian detection method integrating face information and gait period pattern[J].Applied science and technology,2012,39(01):44-50.[doi:10.3969/j.issn.1009-671X.201110010]
点击复制

融合人脸与步态周期模式的行人检测(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年01期
页码:
44-50
栏目:
自动化技术
出版日期:
2012-04-05

文章信息/Info

Title:
A pedestrian detection method integrating face information and gait period pattern
文章编号:
1009-671X(2012)01-0044-07
作者:
王宝玉1 3 贲晛烨2 王科俊3
1.中国电子科技集团公司 第二十七研究所,河南 郑州 450047 ;2.哈尔滨工业大学 交通科学与工程学院, 黑龙江 哈尔滨 150090; 3.哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001
Author(s):
WANG Baoyu13 BEN Xianye2 WANG Kejun3
1. No.27 Research Institute, China Electronic Technology Group Corporation, Zhengzhou 450047, China 2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China 3.College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
行人检测人脸检测步态周期检测多自由度多核跟踪MeanShift
Keywords:
pedestrian detection face detection gait period detection multi-degree-of-freedom multi-kernel MeanShift tracking
分类号:
TP391.41
DOI:
10.3969/j.issn.1009-671X.201110010
文献标志码:
A
摘要:
提出多自由度的多核跟踪MeanShift算法,其在运动人体目标与背景图像的颜色信息较为接近时仍能鲁棒地跟踪. 将所提出的跟踪算法用于融合人脸与步态周期模式的行人检测新算法,将闭环的控制思想引入到行人检测中,即通过步态周期和相应的跟踪反馈验证的理论方法来解决行人检测中误报率高的问题;还对行人部分轮廓存在遮挡的情况提供行人检测的新思路,即通过检测人脸来确定检测对象是否是行人,以解决当前行人检测算法检测率低的问题.
Abstract:
Multi-degree-of-freedom and multi-kernel MeanShift tracking algorithm was proposed in this paper. Whenever the color information of the target is close to that of the background image, the track was still robust. Moreover, this proposed tracking algorithm was applied to a novel moving pedestrian detection integrating face information and gait period pattern. The idea of closed loop control was involved into the pedestrian detection, ie, gait period detection and corresponding tracking feedback control validation were employed to solve the problem of high false positive rate in the pedestrian detection. Furthermore, to resolve the problem of low detection rate in pedestrian detection, the proposed algorithm may provide a novel attacking approach for the parts of contour with occlusion existing in pedestrian detection, and whether a pedestrian existed or not can be determined through human face detection.

参考文献/References:

[1] VIOLA P, JONES M, SNOW D. Detecting pedestrians using patterns of motion and appearance[C]//Proceedings of International Conference on Computer Vision. Washington DC, USA, 2003: 734-741.
[2] CUI Xinyi, LIU Yazhou, SHAN Shiguang, et al. 3D Haar-like features for pedestrian detection[C]//2007 IEEE International Conference on Multimedia and Expo. Beijing, China, 2007: 1263-1266.
[3] SEN B K, FUJIMURA K, KAMIJO S. Pedestrian detection by on-board camera using collaboration of inter-layer algorithm[C]//12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA, 2009: 1-8.
[4] GUO Lie, WANG Rongben, JIN Lisheng, et al. Algorithm study for pedestrian detection based on monocular vision[C]//IEEE International Conference on Vehicular Electronics and Safety. Shanghai, China, 2006: 83-87.
[5] CHENG Hong, ZHENG Nanning, QIN Junjie. Pedestrian detection using sparse Gabor filter and support vector machine[C]//Proceedings of 2005 Intelligent Vehicles Symposium. Las Vegas, USA, 2005: 583- 587.
[6] SU Songzhi, CHEN Shuyuan, LI Shaozi, et al. Structured local edge pattern moment for pedestrian detection[C]//2010 International Conference on Image Analysis and Signal Processing. Xiamen, China, 2010: 556-560.
[7] YU Liping, YAO Wentao, LIU Huaping, et al. A monocular vision based pedestrian detection system for intelligent vehicles[C]//2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands, 2008: 524-529.
[8] MAO Xin, QI Feihu, ZHU Wenjia. Multiple-part based pedestrian detection using interfering object detection[C]// Third International Conference on Natural Computation. Haikou, China, 2007: 165-169.
[9] SCHAULAND S, KUMMERT A, PARK S B, et al. Vision-based pedestrian detection: improvement and verification of feature extraction methods and SVM-based classification[C]//2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada, 2006: 97-102.
[10] MUNDER S, SCHNORR C, GAVRILA D M. Pedestrian detection and tracking using a mixture of view-based shape-texture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 333-343. [
11] ARMANFARD N, KOMEILI M, KABIR E. TED: a texture-edge descriptor based on LBP for pedestrian detection[C]//International Symposium on Telecommunications. Tehran, Iran, 2008: 643-648.
[12] LI Min, ZHANG Zhaoxiang, HUANG Kaiqi, et al. Pyramidal statistics of oriented filtering for robust pedestrian detection[C]//2009 IEEE 12th International Conference on Computer Vision Workshops. Kyoto, Japan, 2009: 1153-1160.
[13] WANG Min, WANG Jianqing, QIAO Hong, et al. Improved shape context algorithm for online fast recognition: an application in pedestrian detection from a moving vehicle[C]// 2009 IEEE Intelligent Vehicles Symposium. Xi’an, China, 2009: 1260-1264.
[14] STEFAN W, NIKODEM M, SCHINDLER K, et al. New features and insights for pedestrian detection[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 1030-1037.
[15] PARK J, LUO Y, WANG H, et al. Pedestrian detection by modeling local convex shape features[C]//19th International Conference on Pattern Recognition.Tampa, USA, 2008: 1-4.
[16] NANNI L, LUMINI A. Ensemble of multiple pedestrian representations[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 365-369.
[17] WANG Kejun, BEN Xianye, ZHAO Yue. Gait period detection based on regional characteristics analysis[C]// Proceedings of the 2009 Chinese Conference on Pattern Recognition, and the CJK Joint Workshop on Pattern Recognition. Nanjing, China, 2009: 542-547.
[18] 贲晛烨, 王科俊, 马慧. 视频下的正面人体身份自动识别[J]. 智能系统学报, 2012, 7(1): 69-74.
[19] 苏景龙, 林天威, 王科俊, 等. 视频流下的人脸检测与跟踪[J]. 应用科技,2011, 38(3): 5-11.
[20] 贾慧星 章毓晋. 基于梯度方向直方图特征的多核跟踪[J]. 自动化学报,2009, 35(10): 1283-1289.

相似文献/References:

[1]苏景龙,林天威,王科俊,等.视频流下的人脸检测与跟踪[J].应用科技,2011,38(03):5.[doi:10.3969/j.issn.1009-671X.2011.03.002]
 SU Jinglong,LIN Tianwei,WANG Kejun,et al.Face detection and tracking in video[J].Applied science and technology,2011,38(01):5.[doi:10.3969/j.issn.1009-671X.2011.03.002]
[2]孔凡芝,张兴周,谢耀菊.基于Adaboost的人脸检测技术[J].应用科技,2005,32(06):7.
[3]潘晓宏1,赵龙1,2.基于Unscented 卡尔曼滤波算法在海底地形辅助导航中的应用[J].应用科技,2015,42(01):49.[doi:10.3969/j.issn.1009671X.201312017]
 WU Xian,LIU Qifeng.A method of selecting source data ofpictures in the modeling of face detection[J].Applied science and technology,2015,42(01):49.[doi:10.3969/j.issn.1009671X.201312017]
[4]吴限,刘崎峰.人脸检测建模源照片筛选方法[J].应用科技,2015,42(01):33.[doi:10.3969/j.issn.1009671X.201312017]
 WU Xian,LIU Qifeng.A method of selecting source data ofpictures in the modeling of face detection[J].Applied science and technology,2015,42(01):33.[doi:10.3969/j.issn.1009671X.201312017]
[5]陈聪,杨忠,宋佳蓉,等.一种改进的卷积神经网络行人识别方法[J].应用科技,2019,46(03):51.[doi:10.11991/yykj.201809014]
 CHEN Cong,YANG Zhong,SONG Jiarong,et al.An improved pedestrian detection method based on convolutional neural network[J].Applied science and technology,2019,46(01):51.[doi:10.11991/yykj.201809014]

备注/Memo

备注/Memo:
基金项目:中国博士后科学基金面上资助项目(20110491087).
作者简介:王宝玉(1984-), 男,硕士研究生,主要研究方向:模式识别与智能系统,E-mail:baoyuwang666@163.com.
更新日期/Last Update: 2012-04-10