[1]徐君臣,银建中.纤维缠绕复合材料气瓶研究进展[J].应用科技,2012,39(04):64-71.[doi:10.3969/j.issn.1009- 671X.2012.04.014]
 XU Junchen,YIN Jianzhong.Progress in filament- wound composite gas cylinders[J].Applied science and technology,2012,39(04):64-71.[doi:10.3969/j.issn.1009- 671X.2012.04.014]
点击复制

纤维缠绕复合材料气瓶研究进展(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年04期
页码:
64-71
栏目:
材料与化学
出版日期:
2012-10-05

文章信息/Info

Title:
Progress in filament- wound composite gas cylinders
文章编号:
1009- 671X(2012)04- 0064- 08
作者:
徐君臣银建中
大连理工大学 化工机械学院,辽宁 大连 116024
Author(s):
XU Junchen YIN Jianzhong
School of Chemical Machinery,Dalian University of Technology,Dalian 116024, China
关键词:
复合材料气瓶纤维缠绕失效准则失效模式优化设计
Keywords:
composite gas cylindersfilament woundfailure criterionfailure modeoptimal design
分类号:
TQ 053.2
DOI:
10.3969/j.issn.1009- 671X.2012.04.014
文献标志码:
A
摘要:
纤维缠绕复合材料气瓶具有高比强度和比模量、抗疲劳、抗腐蚀等优点,已经成为研究的焦点. 文中分析了纤维缠绕复合材料气瓶在国内外的研究进展,并进行了归纳总结,主要内容包括:纤维缠绕复合材料气瓶的国内外标准、制造过程中应考虑的主要因素、失效准则、失效模式以及优化设计. 通过对比发现,Tsai-Wu失效准则预测的失效压力与实验值最接近. 提出了一些预防复合材料气瓶失效的措施,对气瓶的安全使用有一定的借鉴作用. 最后指出了未来研究的重点.
Abstract:
Filament-wound composite gas cylinders have become a research focus because they exhibit many advantages such as high strength-density and stiffness-density ratios, and excellent resistance to fatigue and corrosion. This paper summarizes the progress in filament-wound composite gas cylinders at home and abroad. The domestic and abroad standards, the main factors that should be considered in manufacturing process, failure criteria, failure mode and optimal design of filament-wound composite gas cylinders are discussed here. By comparison, it was found that the Tsai-Wu failure criterion leads to most accurate failure pressure among all failure criteria. Some measures are put forward to prevent the failure of composite gas cylinders and it is of great significance to improving composite gas cylinders safely. The focus of future research is summarized finally.

参考文献/References:

[1]陈汝训. 复合材料天然气气瓶设计的几个问题[J]. 宇航材料工艺,2001,31(5): 55-57.
[2]张宗毅,邓贵德,寿比南,等. 缠绕张力对环缠绕复合材料气瓶应力的影响[J]. 压力容器,2011,28(5): 7-14.
[3]王欣荣. 考虑工艺因素的复合材料缠绕压力容器的承载能力分析[D]. 大连:大连理工大学,2011: 35-41.
[4]COHEN D. Influence of filament winding parameters on composite vessel quality and strength [J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(12): 1035-1047.
[5]KALAYCIOGLU B, DIRIKOLU M H. Investigation of the design of a metal-lined fully wrapped composite vessel under high internal pressure[J]. High Pressure Research, 2010, 30(3): 428-437.
[6]BERTIN M, TOUCHARD F, LAFARIE-FRENOT M C. Experimental study of the stacking sequence effect on polymer/composite multi-layers submitted to thermomechanical cyclic loadings [J]. International Journal of Hydrogen Energy, 2010, 35(20): 11397-11404.
[7]GENTILLEAU B, BERTIN M, TOUCHARD F, et al. Stress analysis in specimens made of multi-layer polymer/composite used for hydrogen storage application:comparison with experimental results[J]. Composite Structures, 2011, 93(11): 2760-2767.
[8]VELOSA J C, NUNES J P, ANTUNES P J, et al. Development of a new generation of filament wound composite pressure cylinders [J]. Composites Science and Technology, 2009, 69(9): 1348-1353.
[9]WILD P M, VICKERS G W. Analysis of filament-wound cylindrical shells under combined centrifugal, pressure and axial loading[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(1): 47-55.
[10]PARNAS L, KATIRCI N. Design of fiber-reinforced composite pressure vessels under various loading conditions[J]. Composite Structures, 2002, 58(1): 83-95.
[11]ROSENOW M W K. Wind angle effects in glass fiber-reinforced polyester filament wound pipes [J]. Composites, 1984, 15(2): 144-152.
[12]ERKAL S, SAYMAN O, BENLI S, et al. Fatigue damage in composite cylinders[J]. Polymer Composites, 2010, 31(4): 707-713.
[13]古海波. 全缠绕复合气瓶预紧压力和缠绕层厚度的优[D]. 大连:大连理工大学,2006: 21-27.
[14]池秀芬,刘志栋,王小永. 复合材料缠绕压力容器的失效风险分析[J]. 真空与低温,2006,12(4): 226-230.
[15]HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948, 193(1033): 281-297.
[16]HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[17]HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206.
[18]TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
[19]张晓军,常新龙. 复合材料气瓶有限元应力应变分析[J]. 纤维复合材料,2008,25(3): 3-6.
[20]WANG Y, ZHENG Z, SUN M, et al. Finite element modeling of carbon fiber reinforced polymer pressure vessel[C]//. 2010 International Conference on Educational and Network Technology (ICENT 2010). Oinhuangdao,China, 2010:259-262.
[21]PARK J H, HWANG J H, LEE CS, et al. Stacking sequence design of composite laminates for maximum strength using genetic algorithms[J]. Composite Structures, 2001, 52(2): 217-231.
[22]MOHARRERZADEH S, ATAI A. Obtaining an optimum weight for a composite pressure vessel [J]. Advanced Materials Forum, 2010, 636(5): 1105-1111.
[23]DONGXIA L, LI L, MING L. Nonlinear finite element analysis of mechanical characteristics on CFRP composite pressure vessels[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 1-6.
[24]ANTUNES P J, DIAS G R, NUNES J P, et al. Finite element modeling of thermoplastic matrix composite gas cylinders[J]. Journal of Thermoplastic Composite Materials, 2008, 21(5): 411-441.
[25]XU P, ZHENG J Y, LIU P F. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials & Design, 2009, 30(7): 2295-2301.
[26]雷闽,李文春,梁勇军. 车用压缩天然气全复合材料气瓶缺陷分析[J]. 压力容器,2010,27(3): 56-61.
[27]夏立荣. 车用CNG全复合材料气瓶内胆鼓包的成因与预防[J]. 中国特种设备安全,2010,26(1): 59-60.
[28]刘庆生,李斌. 对车用缠绕式CNG气瓶定期检验的几点意见[J]. 中国锅炉压力容器安全,2004,20(2): 26-27.
[29]秋长鋆. 汽车用压缩天然气(CNG)燃料气瓶安全技术的基本要求[C]// 2005年特种设备安全国际论坛. 北京,中国,2005.
[30]徐延海. 表面损伤对全复合材料车用天然气气瓶强度的影响[J]. 天然气工业,2008,28(1): 132-133.
[31]MAKINSON J, NEWHOUSE N L. Flaw testing of fiber reinforced composite pressure vessels [J]. ASME Conference Proceedings, 2010, 2010(49200): 653-659.
[32]KIM Y S, KIM L H, PARK J S. The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles [J]. Composite Structures, 2011, 93(11): 2963-2968.
[33]张晓兵,魏喜龙,宋凌云,等. 复合材料压力容器基体开裂损伤的研究[J]. 纤维复合材料,2008,25(1): 7-10.
[34]王晓宏,张博明,刘长喜,等. 纤维缠绕复合材料压力容器渐近损伤分析[J]. 计算力学学报,2009,26(3): 446-452.
[35]ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modeling incorporating failure [J]. Composite Structures, 2008, 86(1/2/3): 194-210.
[36]CHOI H Y, DOWNS R, CHANG F K. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part I—experiments [J]. Journal of Composite Materials, 1991, 25(8): 992-1011.
[37]CHOI HY, WU HYT, CHANG FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part II—analysis [J]. Journal of Composite Materials, 1991, 25(8): 1012-1038.
[38]张彦,朱平,来新民,等. 低速冲击作用下碳纤维复合材料铺层板的损伤分析[J]. 复合材料学报,2006,23(2): 150-157.
[39]KANEKO T, UJIHASHI S, YOMODA H, et al. Finite element method failure analysis of a pressurized FRP cylinder under transverse impact loading[J]. Thin-Walled Structures, 2008, 46(7-9): 898-904.
[40]古海波,刘东学. 碳纤维全缠绕铝内胆气瓶预紧压力的优化[J]. 中国特种设备安全,2008,24(12): 18-21.
[41]李小明,邱桂杰,刘锦霞. 某型复合材料气瓶优化设计[J]. 纤维复合材料,2007,24(1): 21-23.
[42]开方明,郑津洋,刘鹏飞,等. 70MPa车用轻质高压储氢容器自增强理论建模[J]. 武汉理工大学学报,2006,28(z1): 350-354.
[43]李玮. 碳纤维复合材料强度与碳纤维缠绕铝内胆复合气瓶的研究[D]. 北京:北京化工大学,2010: 39-40.
[44]边文凤. 天然气汽车复合材料气瓶的优化设计[J]. 压力容器,2004,21(1): 146-149.
[45]王志辉,郑强. 全缠绕复合气瓶有限元优化设计[J]. 武汉理工大学学报,2009,31(5): 733-743.
[46]傅强. 轻质高压储氢容器整体优化设计[D]. 杭州:浙江大学,2004: 52-58.
[47]KANG M C, LEE H W, KIM C. Optimal design considering structural efficiency of compressed natural gas fuel storage vessels for automobiles[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 199-204.
[48]XU P, ZHENG J, CHEN H, et al. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2840-2846.
[49]LIU P, XU P, ZHENG J. Artificial immune system for optimal design of composite hydrogen storage vessel[J]. Computational Materials Science, 2009, 47(1): 261-267.

更新日期/Last Update: 2012-10-10