[1]江树勇,张艳秋,赵立红,等.基于不同减薄量的纵向内筋薄壁筒反向滚珠旋压分析[J].应用科技,2012,39(05):1-6.[doi:10.3969/j.issn.1009-671X.201204002]
 JIANG Shuyong,ZHANG Yanqiu,ZHAO Lihong,et al.Analysis on backward ball spinning of the thin-walled tube with longitudinal inner ribs based on various wall thickness reductions[J].Applied science and technology,2012,39(05):1-6.[doi:10.3969/j.issn.1009-671X.201204002]
点击复制

基于不同减薄量的纵向内筋薄壁筒反向滚珠旋压分析(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年05期
页码:
1-6
栏目:
机电工程
出版日期:
2012-10-05

文章信息/Info

Title:
Analysis on backward ball spinning of the thin-walled tube with longitudinal inner ribs based on various wall thickness reductions
文章编号:
1009-671X(2012)05-0001-06
作者:
江树勇 张艳秋赵立红唐明
哈尔滨工程大学 工程训练中心, 黑龙江 哈尔滨 150001
Author(s):
JIANG Shuyong ZHANG Yanqiu ZHAO Lihong TANG Ming
Industrial Training Centre, Harbin Engineering University, Harbin 150001, China
关键词:
强力旋压滚珠旋压薄壁筒有限元法
Keywords:
power spinning ball spinning thin-walled tube finite element method
分类号:
TG306
DOI:
10.3969/j.issn.1009-671X.201204002
文献标志码:
A
摘要:
采用反向滚珠旋压制造带有纵向内筋的薄壁筒形件. 将刚塑性有限元与工艺实验相结合,被应用于分析在不同壁厚减薄量下带有纵向内筋薄壁筒形件反向滚珠旋压成形. 有限元模拟结果和实验结果都表明内筋的高度随着壁厚减薄量的增加而增加,但在模拟结果与实验结果之间存在着大约10%的误差. 有限元模拟的应变等值线图表明在筒壁变形区的径向应变和内筋变形区的切向应变有助于内筋的成形. 轴向旋压力有限元预测结果表明较大的壁厚减薄量导致了轴向旋压力的增加,同时也导致了旋压件表面金属材料的非稳定流动.
Abstract:
Backward ball spinning was applied to manufacturing the thin-walled tube with longitudinal inner ribs. Rigid-plastic finite element method (FEM) along with the process experiments was used to analyze backward ball spinning of the thin-walled tube with longitudinal inner ribs under various wall thickness reductions. Finite element simulation results and experimental results indicate that the height of the inner ribs increases with the increase of wall thickness reduction, but there exists a difference of about 10% between the simulation results and the experimental ones. The strain contour charts from FEM show that the radial strain in the deformation zone of the tubular wall and the tangential strain in the deformation zone of the inner rib contribute to forming the inner rib. However, the axial strain has an adverse influence on forming of the inner ribs. The FEM prediction results of the axial spinning force component reveal that the larger wall thickness reduction leads to the increase of the axial spinning force component as well as the unsteady flow of the metal on the surface of the spun part.

参考文献/References:

[1] HUA F A, YANG Y S, ZHANG Y N, et al. Three-dimensional finite element analysis of tube spinning [J]. Journal of Materials Processing Technology, 2005, 168(1): 68-74.
[2] LI Kezhi, HAO Nanhai, LU Yan, et al. Research on the distribution of the displacement in backward tube spinning[J]. Journal of Materials Processing Technology, 1998, 79(1/2/3): 185-188.
[3] XUE Kemin, LU Yan, ZHAO Xianming. The disposal of key problems in the FEM analysis of tube stagger spinning[J]. Journal of Materials Processing Technology, 1997, 69(1/2/3): 176-179.
[4] TANG Y, CHI I Y, CHEN J C, et al. Experimental study of oil-filled high-speed spin forming micro-groove fin-inside tubes[J]. International Journal of Machine Tools and Manufacturing, 2007, 47(7/8): 1059-1068.
[5] ZHANG Guangliang, ZHANG Shihong, LI Bing, et al. Analysis on folding defects of inner grooved copper tubes during ball spin forming[J]. Journal of Materials Processing Technology, 2007, 184: 393-400.
[6] ROTARESCU M I. A theoretical analysis of tube spinning using balls[J]. Journal of Materials Processing Technology, 1995, 54(1/2/3/4): 224-229.
[7] JIANG Shuyong, REN Zhengyi. Analysis of mechanics in ball spinning of thin-walled tube[J]. Chinese Journal of Mechanical Engineering, 2008, 21(1): 25-30.
[8] HANG S H, LI Maosheng, XU Yi, et al. Introduction to a new CNC ball-spinning machine[J]. Journal of Materials Processing Technology, 2005, 170(1/2): 112-114.
[9] JIANG Shuyong, XUE Kemin, ZONG Yingying, et al. Process factors influencing spinning deformation of thin-walled tubular part with longitudinal inner ribs[J]. Transactions Nonferrous Metals Society of China, 2004, 14(4): 702-707.
[10] JIANG Shuyong, LI Ping, XUE Kemin. Application of BPANN in spinning deformation of thin-walled tubular parts with longitudinal inner ribs[J]. Journal of Central South University of Technology, 2004, 11(1): 27-30.
[11] JIANG Shuyong, XUE Kemin, LI Chunfeng, et al. Spinning deformation criteria of thin-walled tubular part with longitudinal inner ribs[J]. Journal of Wuhan University of Technology, 2006, 21(4): 169-172.
[12] JIANG Shuyong, REN Zhengyi, XUE Kemin, et al. Application of BPANN for prediction of backward ball spinning of thin-walled tubular part with longitudinal inner ribs[J]. Journal of Materials Processing Technology, 2008, 196(1/2/3): 190-196.
[13] JIANG Shuyong, REN Zhengyi, WU Bin, et al. General issues of FEM in backward ball spinning of thin-walled tubular part with longitudinal inner ribs[J]. Transactions Nonferrous Metals Society of China, 2007, 17(4): 793-798.
[14] XUE Kemin, WANG Zhen, LU Yan, et al. Elastic-plastic FEM analysis and experimental study of diametral growth in tube spinning[J]. Journal of Materials Processing Technology, 1997, 69(1/2/3): 172-175.
[15] XU Y, ZHANG S H, LI P, et al. 3D rigid-plastic FEM numerical simulation on tube spinning[J]. Journal of Materials Processing Technology, 2001, 113(1/2/3): 710-730.

相似文献/References:

[1]陆鹏,赵亚楠,张艳秋,等.基于不同减薄量的镍钛合金管热旋压成形分析[J].应用科技,2013,40(01):1.[doi:10.3969/j.issn.1009-671X.201301015]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Deformation analysis of hot spinning of NiTi alloy tube based on different wall thickness reduction[J].Applied science and technology,2013,40(05):1.[doi:10.3969/j.issn.1009-671X.201301015]
[2]陆鹏,赵亚楠,张艳秋,等.镍钛形状记忆合金管滚珠热旋压成形数值模拟[J].应用科技,2013,40(04):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Numerical simulation of hot ball spinning of NiTi shape memory alloy tube[J].Applied science and technology,2013,40(05):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]

备注/Memo

备注/Memo:
黑龙江省博士后科研启动基金资助项目(LBH-Q10125)
更新日期/Last Update: 2012-10-25