[1]张文辉,胡小平,朱银发.自由漂浮空间机械臂基于神经网络的H∞鲁棒控制[J].应用科技,2012,39(06):5-8.[doi:10.3969/j.issn.1009-671X.2012.201209005]
 ZHANG Wenhui,HU Xiaoping,ZHU Yinfa.Neural network based H∞ robust control of free-floating space robot manipulators[J].Applied science and technology,2012,39(06):5-8.[doi:10.3969/j.issn.1009-671X.2012.201209005]
点击复制

自由漂浮空间机械臂基于神经网络的H∞鲁棒控制(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第39卷
期数:
2012年06期
页码:
5-8
栏目:
计算机技术与应用
出版日期:
2013-01-15

文章信息/Info

Title:
Neural network based H∞ robust control of free-floating space robot manipulators
文章编号:
1009- 671X(2012)06- 0005- 04
作者:
张文辉胡小平朱银发
丽水学院 工学院,浙江 丽水 323000
Author(s):
ZHANG Wenhui HU Xiaoping ZHU Yinfa
College of Technology, Lishui University, Lishui 323000, China
关键词:
神经网络空间机械臂H∞鲁棒控制自适应控制
Keywords:
neural networkspace manipulatorsH∞ robust controladaptive control
分类号:
TP242
DOI:
10.3969/j.issn.1009-671X.2012.201209005
文献标志码:
A
摘要:
考虑到自由漂浮状态的空间机器人模型不确定性,提出了神经网络的H∞鲁棒控制策略. 首先建立自由漂浮空间机器人的动态模型,再利用径向基函数(RBF)神经网络良好的逼近能力自适应补偿系统的未知非线性模型,逼近误差作为外界干扰通过鲁棒控制器消除,该方法从整个闭环系统的稳定性出发建立了神经网络权值在线学习算法,利用H∞理论设计的鲁棒控制器保证了系统的稳定性,并使系统L2增益小于给定的指标. 仿真结果表明了所提出的控制器的有效性.
Abstract:
This paper presents a H∞ robust control algorithm based on neural network for solving the uncertainty of space robots in a free floating state. First the dynamic model of a free-floating space robot was built, then by making use of the good approximation ability of the RBF (radial basis function) neural network, the unknown non-linear model of the system was adaptively compensated,and the approximation error was regarded as external interference,which was eliminated by a robust controller. A neural network weight on-line learning algorithm was built for the purpose of ensuring stability of the whole closed loop system. The robust controller designed based on H∞ theory ensures stability of the system, and that L2 gain is less than the given index. The simulation results show the presented control algorithm is effective.

参考文献/References:

[1]PAUL R P. Modeling trajectory calculation and serving of a computer controlled arm[M]. Stanford Artificial Intelligence Laboratory memo AIM177,1972.47-58
[2]SANNER R M, SLOTINE T T E. Stable adaptive control of robot manipulator using neural networks[J]. Neural Computation, 1995,7(4): 753-790.
[3]孙炜. 智能神经网络的机器人控制理论方法研究 [D]. 长沙:湖南大学,2002:69-75.
[4]王景,刘良栋,梁斌,等. 任务空间内空间机械臂的自适应控制[J]. 中国空间科学技术,2000,12(6): 30-34.
[5]MECHADO J A T. Variable structure control of manipulators with compliant joints [C]// IEEE International Conference Industrial. Electron. London, UK, 1993,554-559.
[6]洪在地,贠超,陈力. 漂浮基空间机器人及其柔性影响下逆模神经网络控制[J].宇航学报,2007,28(6): 1509-1514.
[7]洪昭斌,陈力. 基于神经网络的漂浮基空间机械臂的自学习模糊控制[J].机械科学与技术,2009,28(7): 976-980.
[8]KIM Y H, LEWIS F L. Neural network output feedback control of robot manipulators[J]. IEEE Trans on Robotics and Automation,1999,15(2): 301-309.
[9]谢箭,刘国良,颜世佐,等. 基于神经网络的不确定性空间机器人自适应控制方法研究[J].宇航学报,2010, 31(1): 123-129.
[10]谢国伟. 空间机器人的运动控制研究[D]. 哈尔滨:哈尔滨工业大学,2006:34-56.

相似文献/References:

[1]王琦,苏畅,姜弢.“巨”型负磁导率材料的优化设计[J].应用科技,2011,38(04):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
 WANG Qi,SU Chang,JIANG Tao.Optimal design of negative permeability material with “巨”[J].Applied science and technology,2011,38(06):19.[doi:doi:10.3969/j.issn.1009-671X.2011.04.05]
[2]刘少刚,吕建伟,王士成.基于数据融合与神经网络的火灾探测研究[J].应用科技,2011,38(05):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
 LIU Shaogang,LV Jianwei,WANG Shicheng.A primitive study of fire detection method based on data fusion and BP neural network[J].Applied science and technology,2011,38(06):9.[doi:10.3969/j.issn.1009-671X.2011.05.03]
[3]袁建东,夏国清.神经网络监督控制在船用一体化压水堆功率控制中的应用[J].应用科技,2005,32(01):24.
 YUAN Jiandong,XIA Guoqing.Application of neural network supervisory control to power regulating of marine integral pressurized water reactor[J].Applied science and technology,2005,32(06):24.
[4]廖艳苹,谢 红,杨莘元.辅助式小波神经网络的调制识别技术[J].应用科技,2006,33(04):24.
 LIAO Yan-ping,XIE Hong,YANG Shen-yuan.Recognition of modulation using assistant wavelet neural network[J].Applied science and technology,2006,33(06):24.
[5]侯艳雪,黄曼磊,陶丽楠,等.神经网络在永磁同步电机变频调速系统中的应用[J].应用科技,2015,42(02):1.[doi:10.3969/j.issn.1009-671X.201405020]
 HOU Yanxue,HUANG Manlei,TAO Linan,et al.Application of artificial neural network (ANN) in variable frequency speed control system of PMSM[J].Applied science and technology,2015,42(06):1.[doi:10.3969/j.issn.1009-671X.201405020]
[6]陈立伟,黄璐,齐传斌.基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断[J].应用科技,2016,43(02):70.[doi:10.11991/yykj.201506026]
 CHEN Liwei,HUANG Lu,QI Chuanbin.Fault diagnosis for gas turbine blades based on the relevance vector machine optimized by genetic algorithm[J].Applied science and technology,2016,43(06):70.[doi:10.11991/yykj.201506026]
[7]丁虎,姚磊,刘少刚,等.基于神经网络和图像分割的林火图像识别研究[J].应用科技,2016,43(03):82.[doi:10.11991/yykj.201510011]
 DING Hu,YAO Lei,LIU Shaogang,et al.The forest fire image recognition based on neural network and image segmentation[J].Applied science and technology,2016,43(06):82.[doi:10.11991/yykj.201510011]
[8]朱少民,夏虹,杨波,等.蒸发器水位控制系统在线故障诊断方法[J].应用科技,2016,43(05):75.[doi:10.11991/yykj.201512017]
 ZHU Shaomin,XIA Hong,YANG Bo,et al.On-line fault diagnosis method of steam generator water level control system[J].Applied science and technology,2016,43(06):75.[doi:10.11991/yykj.201512017]
[9]张秋云,张营,李臣.遗传算法优化BP神经网络在中医按摩机器人中的应用[J].应用科技,2017,44(02):73.[doi:10.11991/yykj.201603018]
 ZHANG Qiuyun,ZHANG Ying,LI Chen.Application of BP neural network based on genetic algorithm optimization in Chinese medicine massage robot[J].Applied science and technology,2017,44(06):73.[doi:10.11991/yykj.201603018]
[10]田瑶瑶,张惠娟,杨忠,等.基于小波包和SOM神经网络的电作动器故障诊断[J].应用科技,2018,45(01):1.[doi:10.11991/yykj.201706023]
 TIAN Yaoyao,ZHANG Huijuan,YANG Zhong,et al.Fault diagnosis of electromechanical actuator based on wavelet packet and SOM neural network[J].Applied science and technology,2018,45(06):1.[doi:10.11991/yykj.201706023]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(61171189);丽水市科技局公益基金资助项目(20120326)
更新日期/Last Update: 2013-01-09