[1]安澄全,彭军伟.基于混合优化的平滑l0 压缩感知重构算法[J].应用科技,2013,40(05):23-28.[doi:10.3969/j.issn.1009-671X.201211020]
 AN Chengquan,PENG Junwei.Sparse recovery using smoothed l0 based on hybrid optimization algorithm[J].Applied science and technology,2013,40(05):23-28.[doi:10.3969/j.issn.1009-671X.201211020]
点击复制

基于混合优化的平滑l0 压缩感知重构算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第40卷
期数:
2013年05期
页码:
23-28
栏目:
现代电子技术
出版日期:
2013-10-05

文章信息/Info

Title:
Sparse recovery using smoothed l0 based on hybrid optimization algorithm
文章编号:
1009-671X(2013)05-0023-06
作者:
安澄全彭军伟
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
AN ChengquanPENG Junwei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
压缩感知稀疏重构光滑l0范数修正牛顿法混合优化
Keywords:
compressive sensing sparse recovery smoothed l0 norm revised Newton method hybrid optimization
分类号:
TN911.7
DOI:
10.3969/j.issn.1009-671X.201211020
文献标志码:
A
摘要:
研究压缩感知的重构算法,分析了平滑l0(smoothed l0, SL0)的理论基础. SL0算法通过利用平滑的高斯函数去逼近l0范数,将重构中的l0范数最小化问题转化为求解光滑函数最小值的最优化问题. 针对算法中最速下降法存在“锯齿现象”和收敛速度慢等缺点,引入数值最优化理论中的混合优化算法,提出了一种基于混合优化的SL0重构算法(HOSL0). 该算法结合了最速下降法和修正牛顿法的优点,提高了算法的重构精度和速度. 仿真实验表明,HOSL0算法与同类算法相比性能有明显提高,同时在重构速度上比BP算法快了2个数量级.
Abstract:
This paper researches the reconstruction algorithm of compressive sensing, analyzes the theoretical basis of smoothed l0 algorithm (SL0). Through the use of a sequence of smoothed Gauss functions to approximate the l0 norm, the problem of minimization of the l0 norm in the reconstruction can be transformed into a convex optimization problem for the smoothed function. This paper proposes a new reconstruction algorithm to overcome the shortcomings of the gradient method, such as "notched effect" and the slow convergence. The algorithm using Smoothed l0 based on Hybrid Optimization algorithm (HOSL0) combines the advantages of the gradient method and the revised Newton method to improve the accuracy and speed of sparse recovery. The numerical simulation results show that the proposed algorithm has fast convergence and better accuracy compared with some existing similar methods. It is experimentally shown that HOSL0 algorithm is about two orders of magnitude faster than backpropagation algorithm under the same conditions.

参考文献/References:

[1] TSAIG Y, DONOHO D L. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
[2] CANDÈS E, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
[3] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
[4] CHEN S S, D DONOHO L. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
[5] GILBERT A C, STRAUSS M J, TROPP J A. Algorithmic linear dimension reduction in the norm for sparse vectors[EB/OL]. [2012-10-09]. http://www.math.ucdavis.edu/vershynin/papers/ algorithrnic-dim-reduction.pdf.
[6] GILBERT A C, STRAUSS M J, Tropp J A. Association for computing machiner[C]// Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York, USA, 2007: 237-246.
[7] DAI W, MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
[8] NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301-321. [9] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 117(8): 387-423.
[10] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4
666.
[11] MOHIMANI H, BABAIE-ZADEH M, JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
[12] MOHIMANI G H, BABAIE-ZADEH M, JUTTEN C. Complex-valued sparse representation based on smoothed ?0 norm[C]// International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA, 2008: 3881-3884.
[13] 赵瑞珍, 林婉娟, 李浩, 等. 基于光滑l0范数和修正牛顿法的压缩感知重建算法[J]. 计算机辅助设计与图形学学报, 2012, 24(4): 478-484.

相似文献/References:

[1]郭凌飞,张林波.通过CWLS-DL优化St-OMP算法的盲信号重构[J].应用科技,2019,46(03):40.[doi:10.11991/yykj.201809021]
 GUO Lingfei,ZHANG Linbo.Blind signal reconstruction of St-OMP algorithm optimized by CWLS-DL[J].Applied science and technology,2019,46(05):40.[doi:10.11991/yykj.201809021]

备注/Memo

备注/Memo:
收稿日期:2012-11-19. 网络出版日期:2013-10-09.
基金项目:国家自然科学基金资助项目(61074076).
作者简介:安澄全(1974-),男,副教授,博士,主要研究方向:现代通信系统与通信技术,E-mail: anchengquan@hrbeu.edu.cn.
更新日期/Last Update: 2013-11-06