[1]杨桄1,张俭峰1,赵波2,等.基于 PCA 和 KRX 算法的高光谱异常检测[J].应用科技,2014,41(05):11-13.[doi:10.3969 / j.issn.1009⁃671X.201312002]
 ,,et al.Anomaly detection based on PCA and KRX in hyperspectral images[J].Applied science and technology,2014,41(05):11-13.[doi:10.3969 / j.issn.1009⁃671X.201312002]
点击复制

基于 PCA 和 KRX 算法的高光谱异常检测(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第41卷
期数:
2014年05期
页码:
11-13
栏目:
现代电子技术
出版日期:
2014-10-05

文章信息/Info

Title:
Anomaly detection based on PCA and KRX in hyperspectral images
文章编号:
1009⁃671X(2014)05⁃011⁃03
作者:
杨桄1 张俭峰1 赵波2 孟强强1 卢珊3
1.空军航空大学,吉林 长春 130022
2. 95806 部队,北京 100076
3. 东北师范大学 地理科学学院,吉林 长春 130024
Author(s):
YANG Guang 1 ZHANG Jianfeng 1 ZHAO Bo 2 MENG Qiangqiang 1 LU Shan3
1. Aviation University of Air Force, Changchun 130022, China
2. 95806 Troops, Beijing 100076, China
3. School of Geographical Science, Northeast Normal University, Changchun 130024, China
关键词:
高光谱图像主成分分析法KRX 算法异常检测ROC 曲线
Keywords:
hyperspectral image principal component analysis Kernel RX algorithm anomaly detection receiver operating characteristic curve
分类号:
TP751
DOI:
10.3969 / j.issn.1009⁃671X.201312002
文献标志码:
A
摘要:
针对高光谱图像背景复杂导致高光谱图像异常检测效果下降的问题,提出了一种新的基于抑制背景的高光谱图像异常检测方法。 该方法首先使用主成分分析法抑制高光谱图像中的背景信息,得到背景抑制后的图像,然后再使用基于核的 RX 算法(KRX 算法)异常检测,最后将检测结果图进行阈值分割,得到一幅二值图像。 最后使用 ROC 曲线对检测结果进行评价,通过与 RX、KRX 算法对比,证明本文方法得到的结果具有较高的检测率和较低的虚警率,充分说明文中方法的有效性。
Abstract:
In order to solve the problem that the complex background will reduce the effect of anomaly decetion, a novel anomaly detection algorithm was proposed. The background of the hyperspectral image is suppressed by prin? cipal component analysis (PCA), and the image after processing was detected by Kernel RX (KRX) algorithm. A binary image can be obtained after threshold segmentation. The higher detection result and the lower false alarm can be gotten by this method, which can prove its advantages by receiver operating characteristic curve ROC) compared with RX and KRX algorithm.

参考文献/References:

[1]罗文斐, 钟亮, 张兵, 等. 高光谱遥感图像端元提取的零空间光谱投影算法[ J].红外与毫米波学报,2010, 29 (4): 307?311.
[2] KWON H, NASRABADI N M. Kernel RX?algorithm: a
nonlinear anomaly detector for hyperspectral imagery [ J].
IEEE Transactions on Geoscience and Remote Sensing,
2005, 43(2): 388?397.
[3]赵春晖, 胡春梅, 包玉刚. 一种背景误差累积的高光谱图像异常检测算法[J]. 光子学报, 2010, 39(10): 1830? 1835.
[4]LI Huali, ZHANG Liangpei. A hybrid automatic endmember
extraction algorithm based on a local window [ J ]. IEEE
Transactions on Geoscience and Remote Sensing, 2011, 49
(11): 4223?4238.
[5] JIA S, QIAN Y. Constrained nonnegative matrix factoriza? tion for hyperspectral unmixing [ J]. IEEE Transactions on
Geoscience and Remote Sensing, 2009, 47(1):161?173.
[6]尤佳. 基于核方法的高光谱图像异常检测算法研究[D].哈尔滨: 哈尔滨工程大学, 2011: 5?37.
[7]寻丽娜, 方勇华, 李新. 高光谱图像中基于端元提取的小目标检测算法[ J]. 光学学报, 2007, 27 ( 7): 1178? 1182.
[8] MEHMOOD A, NASRABADI N M. Wavelet?RX anomaly detection for dual?band forward?looking infrared imagery
[J]. Optical Society of America, 2010, 49 ( 24): 4621? 4632.
[9]WILLIAMS P J, GELADI P, BRITZ T J. Investigation of
fungal development in maize kernels using NIR hyperspec?
tral imaging and multivariate data analysis [ J]. Journal of Cereal Science, 2012, 55(3): 272?278.
[10]梅锋, 赵春晖, 孙岩, 等. 基于新型光谱相似度量核的高光谱异常检测算法[ J]. 光子学报, 2009, 38( 12): 3165?3169.

相似文献/References:

[1]张文升,王立国,孟凡旺.基于嵌套窗口的高光谱图像目标检测[J].应用科技,2009,36(05):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
 ZHANG Wen-sheng,WANG Li-guo,MENG Fan-wang.Nested spatial window based target detection for hyperspectral images[J].Applied science and technology,2009,36(05):12.[doi:10.3969/j.issn.1009-671X.2009.05.004]
[2]赵春晖,王楠楠.基于背景抑制及顶点成分分析的[J].应用科技,2009,36(09):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
 ZHAO Chun hui,WANG Nan nan.Anomaly detection of hyperspectral imagery based on background restrain and VCA[J].Applied science and technology,2009,36(05):11.[doi:oi:10.3969/j.issn.1009-671X.2009.09.003]
[3]王立国,邓禄群,张晶.改进的SGA端元选择的快速方法[J].应用科技,2010,37(04):19.[doi:1009-671X (2010) 04-0019-04]
 WANG Li-guo,DENG Lu-qun,ZHANG Jing.A fast endmember selection method based on simplex growing algorithm[J].Applied science and technology,2010,37(05):19.[doi:1009-671X (2010) 04-0019-04]
[4]王立国,赵妍,王群明.基于POCS的高光谱图像超分辨率方法[J].应用科技,2010,37(10):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
 WANG Li-guo,ZHAO Yan,WANG Qun-ming.POCS based super-resolution method for hyperspectral imagery[J].Applied science and technology,2010,37(05):26.[doi:10.3969/j.issn.1009-671X.2010.10.007]
[5]王立国,杜心平.K均值聚类和孪生支持向量机相结合的高光谱图像半监督分类[J].应用科技,2017,44(03):12.[doi:10.11991/yykj.201606010]
 WANG Liguo,DU Xinping.Semi-supervised classification of hyperspectral images applying the combination of K-mean clustering and twin support vector machine[J].Applied science and technology,2017,44(05):12.[doi:10.11991/yykj.201606010]
[6]王霖郁,刘一博.基于光谱角匹配加权的高光谱图像异常检测[J].应用科技,2017,44(06):20.[doi:10.11991/yykj.201610010]
 WANG Linyu,LIU Yibo.Anomaly detection for hyperspectral image based on weighted spectral angle match[J].Applied science and technology,2017,44(05):20.[doi:10.11991/yykj.201610010]
[7]崔颖,王雪婷,刘述彬,等.基于改进SPA算法的高效降维方法[J].应用科技,2018,45(05):51.[doi:10.11991/yykj.201712002]
 CUI Ying,WANG Xueting,LIU Shubin,et al.An efficient reduction method based on the improved successive projection algorithm[J].Applied science and technology,2018,45(05):51.[doi:10.11991/yykj.201712002]
[8]徐凯,崔颖.Stacking Learning在高光谱图像分类中的应用[J].应用科技,2018,45(06):42.[doi:10.11991/yykj.201712011]
 XU Kai,CUI Ying.Application of Stacking Learning in hyperspectral image classification[J].Applied science and technology,2018,45(05):42.[doi:10.11991/yykj.201712011]

备注/Memo

备注/Memo:
收稿日期:2013-12-10.     网络出版日期:2014-09-24.
基金项目:国家自然科学基金资助项目(41001258).
作者简介:杨桄(1975?), 男,副教授,博士;
张俭峰(1978-),男,硕士.
通信作者:孟强强,E-mail:865422907@ qq.com.
更新日期/Last Update: 2014-11-06