[1]潘晓宏1,赵龙1,2.基于Unscented 卡尔曼滤波算法在海底地形辅助导航中的应用[J].应用科技,2015,42(01):49-52.[doi:10.3969/j.issn.1009671X.201312017]
 WU Xian,LIU Qifeng.A method of selecting source data ofpictures in the modeling of face detection[J].Applied science and technology,2015,42(01):49-52.[doi:10.3969/j.issn.1009671X.201312017]
点击复制

基于Unscented 卡尔曼滤波算法在海底地形辅助导航中的应用(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第42卷
期数:
2015年01期
页码:
49-52
栏目:
现代电子技术
出版日期:
2015-02-05

文章信息/Info

Title:
A method of selecting source data ofpictures in the modeling of face detection
文章编号:
1009671X(2015)0103303
作者:
潘晓宏1赵龙1
上海船舶电子设备研究所,上海 201108
Author(s):
WU XianLIU Qifeng
Shanghai Marine Electronic Equipment Research Institute, Shanghai 201108, China
关键词:
安防系统人脸检测筛选人脸清晰度质量评价
Keywords:
security system face detection selection face definition quality measure
DOI:
10.3969/j.issn.1009671X.201312017
文献标志码:
A
摘要:
安防系统输入数据质量各异,部分质量差的照片会引起误报率升高,如何将这部分数据优化排除,筛选用于人脸建模的安防系统数据源是本文的目的。采用量化照片评价指标的方法,通过对照片中人脸部分的清晰度、对比度等质量因素进行评价,将其量化并排序从而得到数据源质量序列。在软件工程化实践中对随机抽取的100张照片质量评价验证,其评价结果准确率可达95%。以文中所提到的方法对采集数据优化后,其建模后的数据能有效地降低比对过程中误报率,提高安防系统识别的准确率。
Abstract:
The quality of input data is quite different, some poor quality pictures will increase the rate of false alarm in the safety defense system. The purpose of this paper is to optimize these data and choose the source data for modeling the face detection system. Using the method of quantifying the picture evaluation indexes to measure the pictures with the factors influencing quality of face, such as resolution, contrast ratio, etc., then quantify and sequence these factors, and thus derive the quality sequence of data source. In the software engineering practice, 100 images were selected randomly to evaluate their quality, proving that the accuracy of evaluation reaches 95%. The data collected by the method mentioned above were optimized and then used for modeling, proving that the false alarm in the process of comparison can be reduced effectively and the accuracy of identification of safety defense system increased.

参考文献/References:

[1]唐勇. 人脸识别技术综述[J]. 硅谷, 2011(9): 1617.

[2]李丹. 人脸检测在机场离港旅客识别系统中的应用研究[D]. 成都: 四川大学, 2005: 1012.

[3]胡大涛. 人脸识别系统在机场安检中的应用[J]. 科技信息, 2010, 20: 812.

[4]高原. 门禁考勤系统中人脸识别的研究[D]. 武汉: 武汉理工大学, 2012: 710.

[5]刘欢喜. 人体生物特征的综合分析与应用[D]. 上海: 上海交通大学, 2010: 1517.

[6]田源, 于凤芹. 人脸检测方法综述[J]. 计算机安全, 2009(5): 1415.

[7]江昊,何明一. 基于特征约束点的纹理映射算法[J]. 计算机仿真, 2009(1): 2529.

[8]陈柯, 杜利民, 赵向阳. 基于三角剖分的人脸纹理映射[J]. 微计算机应用, 2007(1): 3944.

[9]方昱春, 王蕴红, 谭铁牛. 融合人脸轮廓信息和区域信息改进人脸检测[J]. 计算机学报, 2004(4): 5662.

相似文献/References:

[1]苏景龙,林天威,王科俊,等.视频流下的人脸检测与跟踪[J].应用科技,2011,38(03):5.[doi:10.3969/j.issn.1009-671X.2011.03.002]
 SU Jinglong,LIN Tianwei,WANG Kejun,et al.Face detection and tracking in video[J].Applied science and technology,2011,38(01):5.[doi:10.3969/j.issn.1009-671X.2011.03.002]
[2]王宝玉,等.融合人脸与步态周期模式的行人检测[J].应用科技,2012,39(01):44.[doi:10.3969/j.issn.1009-671X.201110010]
 WANG Baoyu,BEN Xianye,WANG Kejun.A pedestrian detection method integrating face information and gait period pattern[J].Applied science and technology,2012,39(01):44.[doi:10.3969/j.issn.1009-671X.201110010]
[3]孔凡芝,张兴周,谢耀菊.基于Adaboost的人脸检测技术[J].应用科技,2005,32(06):7.
[4]吴限,刘崎峰.被动人脸识别在智能安全控制系统中的应用[J].应用科技,2015,42(02):21.[doi:10.3969/j.issn.1009-671X.201406004]
 WU Xian,LIU Qifeng.Application of passive face recognition in the intelligent safety control system[J].Applied science and technology,2015,42(01):21.[doi:10.3969/j.issn.1009-671X.201406004]
[5]吴限,刘崎峰.人脸检测建模源照片筛选方法[J].应用科技,2015,42(01):33.[doi:10.3969/j.issn.1009671X.201312017]
 WU Xian,LIU Qifeng.A method of selecting source data ofpictures in the modeling of face detection[J].Applied science and technology,2015,42(01):33.[doi:10.3969/j.issn.1009671X.201312017]

更新日期/Last Update: 2015-03-11