[1]张春杰,龚再兰,任黎丽.基于修正的Rife和SVM的辐射源特征提取和识别[J].应用科技,2015,42(03):7-12.[doi:10.3969/j.issn.1009-671X.201403021]
 ZHANG Chunjie,GONG Zailan,REN Lili.Emitter feature extraction and recognition based on the modified Rife and SVM[J].Applied science and technology,2015,42(03):7-12.[doi:10.3969/j.issn.1009-671X.201403021]
点击复制

基于修正的Rife和SVM的辐射源特征提取和识别(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第42卷
期数:
2015年03期
页码:
7-12
栏目:
现代电子技术
出版日期:
2015-06-05

文章信息/Info

Title:
Emitter feature extraction and recognition based on the modified Rife and SVM
作者:
张春杰 龚再兰 任黎丽
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHANG Chunjie GONG Zailan REN Lili
College of Information and Communication, Harbin Engineering University, Harbin 150001, China
关键词:
特征提取辐射源识别相位噪声频率偏移修正的Rife算法支持向量机
Keywords:
feature extractionemitter recognitionphase noisefrequency offsetmodified Rife algorithmsupport vector machine
分类号:
TN911.72
DOI:
10.3969/j.issn.1009-671X.201403021
文献标志码:
A
摘要:
对于混有相位噪声的单个正弦信号,修正的Rife算法具有较高的测频精度.提出了基于修正的Rife和支持向量机(SVM)算法的辐射源个体识别方法.分析了频率振荡器的频谱特征,阐述了修正的Rife算法基本原理和SVM的分类思想.通过修正的Rife算法得到较精确的载频和频率偏移2个参量,并作为SVM的2个特征向量,然后利用分类器识别出不同的辐射源个体.最后对实测数据进行特征提取和辐射源的识别研究.通过计算机仿真验证了本文算法的有效性.
Abstract:
For a single sine signal with mixed phase noise, the modified Rife algorithm has higher frequency measurement accuracy. This paper proposed a recognition method for emitter individuals based on the modified Rife and support vector machine (SVM). First the characteristics of the frequency spectrum of a frequency oscillator were analyzed, then the basic principle of the modified Rife algorithm and the classification thoughts for SVM was expounded. Two precise parameters of carrier frequency and frequency offset which are also the two vectors for SVM were got through the modified Rife algorithm. Classifiers were used to identify different sources of emitter individuals. Finally, emitter feature extraction and recognition research were done for the actually measured data. The computer simulation results proved effectiveness of the algorithm presented in this paper.

参考文献/References:

[1] 柴恒, 孙毓富. 基于无意调制特征的雷达个体识别[J]. 舰船电子对抗, 2011, 34(4): 1-5.
[2] CONNING M, POTGIETER F. Analysis of measured radar data for specific emitter identification[C]// IEEE Radar Conference. Washington DC, USA, 2010: 35-38.
[3] 李娜. 雷达信号有意调制分析及指纹特征提取[D]. 哈尔滨: 哈尔滨工程大学, 2013: 8-10.
[4] 田波, 龙良将. 基于时频原子方法的雷达辐射源信号无意调制特征提取[J]. 电子元器件应用, 2010, 12(5): 44-47.
[5] 任黎丽. 辐射源指纹识别与细微特征提取方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012: 26-31.
[6] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 5-13.
[7] RUEDA L, OOMMEN B J. On optimal pairwise linear classifiers for normal distributions: the 3-dimensional case[J]. Pattern Recognition, 2003, 36(1): 13-23.
[8] PERNKOPF F. Bayesian network classifiers versus selective k-NN classifier[J]. Pattern Recognition, 2005, 38(l): l-10.
[9] 陈娟. 雷达辐射源特征提取与个体识别[D]. 西安: 西安电子科技大学, 2013: 4-5.
[10] SHOTTON J, SHARP T. Real-time human pose recognition in parts from single depth images[J]. Communications of the ACM, 2013, 56(1): 116-124.
[11] CHEN T, JIN W, LI J. Feature extraction using surrounding-line integral bispectrum for radar emitter signal[C]// IEEE International Joint Conference on Neural Networks. Hong Kong, China, 2008: 294-298.

相似文献/References:

[1]谢红,宁志刚,刘世航.一种新的DK-L人脸识别算法研究[J].应用科技,2009,36(02):42.
 XIE Hong,NING Zhi-gang,LIU Shi-hang.New algorithm of DK-L face recognition[J].Applied science and technology,2009,36(03):42.
[2]陈立伟,倪杰.基于多阈值模糊增强的手指静脉图像分割[J].应用科技,2011,38(04):14.[doi:doi:10.3969/j.issn.1009-671X.2011.04.04]
 CHEN Liwei,NI Jie.Method for finger vein feature segmentation based on multithreshold fuzzy enhancement[J].Applied science and technology,2011,38(03):14.[doi:doi:10.3969/j.issn.1009-671X.2011.04.04]
[3]丁维雷,付永庆.kPCA特征提取算法的自动目标识别[J].应用科技,2011,38(09):32.[doi:10.3969/j.issn.1009-671X.2011.09.08]
 DING Weilei,FU Yongqing.Automatic target recognition based on kPCA feature extraction algorithm[J].Applied science and technology,2011,38(03):32.[doi:10.3969/j.issn.1009-671X.2011.09.08]
[4]张鹏,付希凯,葛国栋,等.二维线性大间距判别分析及其在步态识别中的应用[J].应用科技,2014,41(01):11.[doi:10.3969/j.issn.1009-671X.201306002]
 ZHANG Peng,FU Xikai,GE Guodong,et al.2D linear maximum margin discriminant analysis and its application to gait recognition[J].Applied science and technology,2014,41(03):11.[doi:10.3969/j.issn.1009-671X.201306002]
[5]冯驰,胡杨,王兆丰.基于分形理论的涡轮叶片特征提取[J].应用科技,2015,42(04):64.[doi:10.3969/j.issn.1009-671X.201411006]
 FENG Chi,HU Yang,WANG Zhaofeng.Feature extraction of turbine blades based on the fractal theory[J].Applied science and technology,2015,42(03):64.[doi:10.3969/j.issn.1009-671X.201411006]
[6]王素红,宁慧,杨松,等.基于SVM的抄袭检测方法研究[J].应用科技,2015,42(05):51.[doi:10.11991/yykj.201503013]
 WANG Suhong,NING Hui,YANG Song,et al.Research on plagiarism detection method based on SVMs[J].Applied science and technology,2015,42(03):51.[doi:10.11991/yykj.201503013]
[7]马云鹏,李庆武,刘艳,等.基于图像特征融合识别的中文签名鉴伪方法[J].应用科技,2015,42(06):10.[doi:10.11991/yykj.201504011]
 MA Yunpeng,LI Qingwu,LIU Yan,et al.Authenticity identification method for Chinese signature based on image feature fusion recognition[J].Applied science and technology,2015,42(03):10.[doi:10.11991/yykj.201504011]
[8]诸小熊,江加和.基于核相关滤波器的目标跟踪算法[J].应用科技,2017,44(03):48.[doi:10.11991/yykj.201605013]
 ZHU Xiaoxiong,JIANG Jiahe.Visual tracking algorithm based on kernelized correlation filters[J].Applied science and technology,2017,44(03):48.[doi:10.11991/yykj.201605013]
[9]王信,汪友生.基于深度学习与传统机器学习的人脸表情识别综述[J].应用科技,2018,45(01):65.[doi:10.11991/yykj.201707008]
 WANG Xin,WANG Yousheng.Facial expression recognition based on deep learning and traditional machine learning[J].Applied science and technology,2018,45(03):65.[doi:10.11991/yykj.201707008]
[10]高敬鹏,孔维宇,刘佳琪,等.基于时频分析的自适应PCA辐射源调制识别[J].应用科技,2018,45(05):33.[doi:10.11991/yykj.201712013]
 GAO Jingpeng,KONG Weiyu,LIU Jiaqi,et al.Research on emitter modulation recognition of the adaptive PCA based on time-frequency analysis[J].Applied science and technology,2018,45(03):33.[doi:10.11991/yykj.201712013]

备注/Memo

备注/Memo:
收稿日期:2014-3-30;改回日期:。
基金项目:国家自然科学基金资助项目(61301199).
作者简介:张春杰(1975-),女,副教授;龚再兰(1987-),女,硕士研究生.
通讯作者:龚再兰,E-mail:gongzailan@163.com.
更新日期/Last Update: 2015-06-19