[1]谢克宇.基于局部像素特征的图像去噪算法[J].应用科技,2015,42(05):30-33.[doi:10.11991/yykj.201501015]
 XIE Keyu.An image denoising algorithm based on partial pixel characteristics[J].Applied science and technology,2015,42(05):30-33.[doi:10.11991/yykj.201501015]
点击复制

基于局部像素特征的图像去噪算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第42卷
期数:
2015年05期
页码:
30-33
栏目:
现代电子技术
出版日期:
2015-10-05

文章信息/Info

Title:
An image denoising algorithm based on partial pixel characteristics
作者:
谢克宇
中铁第五勘察设计院集团有限公司东北分院, 黑龙江 哈尔滨 150006
Author(s):
XIE Keyu
China Railway Fifth Survey and Design Group Co., Ltd., Northeast Branch, Harbin 150006, China
关键词:
均值滤波中值滤波高斯滤波图像处理图像去噪
Keywords:
mean filtermedian filterGaussian filterimage processingimage denoising
分类号:
TP391
DOI:
10.11991/yykj.201501015
文献标志码:
A
摘要:
针对线阵相机拍摄的动车图像上的噪声对图像比对识别结果产生的不良影响,提出了一种基于局部像素特征的图像去噪算法.该算法首先对待处理图像的像素点进行逐行扫描,并计算每一行的像素均值,同时记录与该行对应且与其相邻的、等距的上下行的像素均值;然后将该行像素均值与等距下行的像素均值进行比较,若比较结果大于设定的阈值,则将等距上、下行的每个像素点之和的均值赋给与该行对应的每个像素点;反之,则保持该行的像素值不变.将该算法与经典去噪算法进行比较,比较结果充分证明了该算法的有效性.将该算法应用到动车图像比对识别的预处理中,大量实际应用表明,该算法的去噪功能可以大大降低由该噪声引起的比对识别误报率.
Abstract:
Considering the negative effect of the noise of an electric multiple unit (EMU) image taken by the linear array cameras on the image identification results, this paper proposes an image denoising algorithm based on partial pixel characteristics. Firstly, this algorithm will scan the pixels of the image to be processed line by line, then calculate the mean value of pixels of each line, and at the same time, record the mean value of the pixels of the adjacent equidistant lines up and down. Furthermore, the mean value of pixels of the line is compared with the mean value of the equidistant lines down. If the value is larger than the set threshold, then assign the mean value of the pixels of the equidistant lines up and down to every pixel point corresponding to the line; on the contrary, the pixel value of the line should be kept invariant. By comparing with the classic denoising algorithms, this new algorithm is proven to be effective. This algorithm was applied to the pre-treatment of the EMU image identification system, showing that this algorithm could greatly lower the rate of false identification caused by the noise.

参考文献/References:

[1] LI Bing, LIU Quansheng, XU Jiawei, et al. A new method for removing mixed noises[J]. Science China Information Sciences, 2011, 54(1): 51-59.
[2] 杨明, 宋丽华. 改进的快速中值滤波算法在图像去噪中的应用[J]. 测绘工程, 2011, 20(3): 65-69.
[3] JIN Qiyu, GRAMA I, LIU Quansheng. Removing poisson noise by optimization of weights in non-local means[C]//Proceedings of 2012 Symposium on Photonics and Optoelectronics (SOPO). Shanghai, China, 2012: 1-4.
[4] XING Lili, CHANG Qianshun, QIAO Tiantian. The algorithms about fast non-local means based image denoising[J]. Acta Mathematicae Applicatae Sinica: English Series, 2012, 28(2): 247-254.
[5] CHEN Jie, CHENG Lan, GAN Minggang. Modeling of GPS code and carrier tracking error in multipath[J]. Chinese Journal of Electronics, 2012, 21(1): 78-84.
[6] 谢可夫, 许悟生. 基于量子理论的图像中值滤波[J]. 计算机工程, 2013, 39(1): 244-247.
[7] 项力领, 刘智, 齐冀, 等. 图像去噪的混合滤波方法[J]. 吉林大学学报: 信息科学版, 2013, 31(3): 266-271.
[8] 武志峰, 郭文刚. 基于高斯滤波的航拍视频图像处理研究[J]. 计算机光盘软件与应用, 2013 (14): 67-68.
[9] 赵建春, 叶丽娜, 刘芳, 等. 改进型中值滤波在图像处理中的应用[J]. 四川兵工学报, 2013, 34(6): 129-131.
[10] 朱士虎, 游春霞. 一种改进的均值滤波算法[J]. 计算机应用与软件, 2013, 30(12): 97-99, 116.
[11] 刘书, 王慈. 基于自适应非局部均值滤波的图像去块算法[J]. 上海交通大学学报, 2013, 47(12): 1930-1933.
[12] 陈杰, 程兰, 甘明刚. 基于高斯和近似的扩展切片高斯混合滤波器及其在多径估计中的应用[J]. 自动化学报, 2013, 39(1): 1-10.
[13] MIAO Zhenwei, JIANG Xudong. Weighted iterative truncated mean filter[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 4149-4160.
[14] BHATEJA V, RASTOGI K, VERMA A, et al. A non-iterative adaptive median filter for image denoising[C]//International Conference on Signal Processing and Integrated Networks (SPIN). Noida, India, 2014: 113-118.
[15] GAO Fuquan, CHEN Lirong, DING Chuanhong, et al. Simplified Gauss Hermite filter based on sparse grid Gauss Hermite quadrature[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(12): 7138-7145.
[16] BABU R E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data[J]. Applied Soft Computing, 2014, 23: 27-38.

相似文献/References:

[1]钟山,孙凤,丁福光,等.基于中值滤波的全垫升气垫船运动仿真参数滤波方法研究[J].应用科技,2005,32(01):31.
 ZHONG Shan,SUN Feng,DING Fuguang,et al.Air cushion vehicle signal de—noising methods based on Daubechies wavelet and median filter[J].Applied science and technology,2005,32(05):31.
[2]司伟建,米胜男,曲志昱,等.数字信道化的调制信号测频方法[J].应用科技,2016,43(03):28.[doi:10.11991/yykj.201508020]
 SI Weijian,MI Shengnan,QU Zhiyu,et al.Frequency measurement method of modulated signals based on digital channelization[J].Applied science and technology,2016,43(05):28.[doi:10.11991/yykj.201508020]
[3]董晴晴,王宏涛,李灏.基于图像处理技术的管道裂缝检测方法研究[J].应用科技,2018,45(01):96.[doi:10.11991/yykj.201703013]
 DONG Qingqing,WANG Hongtao,LI Hao.Research on pipeline crack detecting based on image processing technology[J].Applied science and technology,2018,45(05):96.[doi:10.11991/yykj.201703013]
[4]张勋,马豪伯,李昀澄.行均值梯度与直线拟合联合优化的UUV海面红外图像海天线检测[J].应用科技,2018,45(04):6.[doi:10.11991/yykj.201705019]
 ZHANG Xun,MA Haobo,LI Yuncheng.Sea-sky-line detection of UUV near surface infrared images based on the row-mean value gradient method and linear fitting algorithm[J].Applied science and technology,2018,45(05):6.[doi:10.11991/yykj.201705019]
[5]王东,黎万义,孙佳,等.基于机器视觉的微小零件表面缺陷检测研究[J].应用科技,2018,45(04):131.[doi:10.11991/yykj.201802005]
 WANG Dong,LI Wanyi,SUN Jia,et al.Research of small parts’ surface defects inspection based on machine vision[J].Applied science and technology,2018,45(05):131.[doi:10.11991/yykj.201802005]

备注/Memo

备注/Memo:
收稿日期:2015-2-2;改回日期:。
作者简介:谢克宇(1986-),女,助理工程师,硕士.
通讯作者:谢克宇,E-mail:151869083@qq.com.
更新日期/Last Update: 2015-10-20