[1]王洪亮,夏虹,张会勇,等.纳米流体对临界热流密度强化影响池沸腾实验研究[J].应用科技,2017,44(01):82-86.[doi:10.11991/yykj.201512009]
 WANG Hongliang,XIA Hong,ZHANG Huiyong,et al.Investigation of critical heat flux enhancement pool boiling experiment by using nanofluids[J].Applied science and technology,2017,44(01):82-86.[doi:10.11991/yykj.201512009]
点击复制

纳米流体对临界热流密度强化影响池沸腾实验研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年01期
页码:
82-86
栏目:
核科学技术与应用
出版日期:
2017-02-05

文章信息/Info

Title:
Investigation of critical heat flux enhancement pool boiling experiment by using nanofluids
作者:
王洪亮1 夏虹1 张会勇2 李业2 孙吉良2
1. 哈尔滨工程大学 核科学与技术学院, 黑龙江 哈尔滨 150001;
2. 中广核研究院有限公司, 广东 深圳 518028
Author(s):
WANG Hongliang1 XIA Hong1 ZHANG Huiyong2 LI Ye2 SUN Jiliang2
1. College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China;
2. China Nuclear Power Technology Research Institute, Shenzhen 518028, China
关键词:
纳米流体池沸腾临界热流密度强化粗糙度
Keywords:
nanofluidspooling boilingcritical heat fluxenhancementroughness
分类号:
TB383
DOI:
10.11991/yykj.201512009
文献标志码:
A
摘要:
为探究采用纳米流体作为冷却剂时,下朝向临界热流密度(critical heat flux,CHF)的强化效果和不同粗糙度表面的临界热流密度强化特性。实验制备了4种纳米流体,利用扫描电镜和纳米粒度分析仪分别检测纳米颗粒粒径和基液中颗粒分散状况。试验段采用316不锈钢钢板,以恒电流控制电加热方式进行常压下朝向水平0°池沸腾实验。实验结果表明:体积分数为0.001%的二氧化钛纳米流体的临界热流密度强化效果最为明显,约为61%;表面粗糙度(Ra)在0.086~1.765 μm时,临界热流密度强化效果随Ra增加而降低,当Ra达到2.287 μm时,所对应的CHF强化效果出现增加趋势。
Abstract:
In order to explore the enhancement effect of nanofluids on downward facing critical heat flux and the relation between roughness Ra and CHF enhancement characteristics, four kinds of nanofluids were chosen as preparing materials, scanning electron microscope and nano-particle size analyzer were utilized to detect particle diameter and dispersion effect respectively. The test plate made of 316 stainless steel was heated by constant current, the pooling boiling experiment was conducted on downward horizontal facing at room temperature and pressure. The results show that the volume concentration of 10-3% TiO2 nanofluids get the best enhancement of critical heat flux, about 61%. When the surface roughness (Ra) ranges from 0.086 μm to 1.765 μm, the CHF enhancement effect decreases following the rise of Ra; when Ra reaches 2.287 μm, the corresponding CHF enhancement effect tends to decrease.

参考文献/References:

[1] 武铃珺. 压水堆核电站严重事故下注水冷却措施的研究[D].上海:上海交通大学, 2008:1-2.
[2] BANG I C, CHANG S H. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J]. International journal of heat and mass transfer, 2005, 48:2407-2419.
[3] CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME-Publications-Fed, 1995, 231:99-106.
[4] 朱海涛. 纳米流体的制备, 稳定及导热性能研究[D]. 济南:山东大学, 2005:4-5.
[5] 宣益民. 纳米流体能量传递理论与应用[J]. 中国科学:技术科学, 2014(3):6.
[6] YOU S, KIM J, KIM K. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer[J]. Applied physics letters, 2003. 83(16):3374-3376.
[7] MORENO G, OLDENBURG S J, YOU S M, et al. Pool boiling heat transfer of alumina-water, zinc oxide-water and alumina-water+ ethylene glycol nanofluids[C]//ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. American Society of Mechanical Engineers, 2005:625-632.
[8] KIM J H, KIM K H, YOU S M. Pool boiling heat transfer in saturated nanofluids[C]//ASME 2004 International Mechanical Engineering Congress and Exposition. Fairfield, USA:American Society of Mechanical Engineers. 2004:621-628.
[9] KIM H D, KIM J, KIM M H. Experimental studies on CHF characteristics of nano-fluids at pool boiling[J]. International journal of multiphase flow, 2007, 33(7):691-706.
[10] BANG I C, CHANG S H. Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool[J]. International journal of heat and mass transfer, 2005, 48(12):2407-2419.
[11] 谭伟键, 王宙斐, 王先菊, 等. 水合二氧化钛纳米流体的分散性研究[C]//Proceedings of 2010 The 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan, China, 2010.
[12] KIM H, KIM J, KIM M. Experimental study on CHF characteristics of water-TiO2 nano-fluids[J]. Nuclear engineering and technology, 2006, 38(1):61.
[13] FERJANCIC K, GOLOBIC I. Surface effects on pool boiling CHF[J]. Experimental thermal and fluid science, 2002(25):565-571.

备注/Memo

备注/Memo:
收稿日期:2015-12-10。
作者简介:王洪亮(1990-),男,硕士研究生;夏虹(1962-),女,教授,博士生导师.
通讯作者:王洪亮,E-mail:958077496@qq.com.
更新日期/Last Update: 2017-02-10