[1]赵亚楠,江树勇,张艳秋,等.NiTi形状记忆合金的热变形行为及热加工图[J].应用科技,2017,44(01):76-81.[doi:10.11991/yykj.201605014]
 ZHAO Yanan,JIANG Shuyong,ZHANG Yanqiu,et al.Hot deformation behavior and processing map of NiTi shape memory alloy[J].Applied science and technology,2017,44(01):76-81.[doi:10.11991/yykj.201605014]
点击复制

NiTi形状记忆合金的热变形行为及热加工图(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年01期
页码:
76-81
栏目:
材料与化学
出版日期:
2017-02-05

文章信息/Info

Title:
Hot deformation behavior and processing map of NiTi shape memory alloy
作者:
赵亚楠 江树勇 张艳秋 朱晓明
哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Yanan JIANG Shuyong ZHANG Yanqiu ZHU Xiaoming
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
形状记忆合金NiTi合金变形行为热加工图塑性加工动态再结晶显微组织
Keywords:
shape memory alloyNiTi alloydeformation behaviorprocessing mapplastic workingdynamic recrystallizationmicrostructure
分类号:
TB381
DOI:
10.11991/yykj.201605014
文献标志码:
A
摘要:
为了获得镍钛形状记忆合金塑性加工最佳工艺参数,采用等温压缩实验研究了名义成分为Ni50.9Ti49.1(原子分数)的形状记忆合金在温度为600~1 000℃和应变为0.001~1 s-1条件下的变形行为,并基于动态材料模型构建了该合金的热加工图。结果表明,当应变速率一定时,Ni50.9Ti49.1合金的流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大。Ni50.9Ti49.1合金的高η值区域随着真应变的增大而逐渐减小,且该Ni50.9Ti49.1合金的热变形失稳区随着真应变的增大而增大,这说明材料的热加工性能随着变形程度的增大而变差。Ni50.9Ti49.1合金的最佳热加工区域为具有高η值的稳定加工区,即温度为700~950℃,应变速率为0.005~0.05 s-1
Abstract:
In order to obtain the optimal process parameters of NiTi shape memory alloy during plastic working, based on isothermal compression test, hot deformation behavior of Ni50.9Ti49.1 (mole fraction) shape memory alloy was investigated at the temperatures ranging from 600℃ to 1 000℃ and at the strain rates ranging from 0.001 to 1 s-1. Furthermore, processing map was established on the basis of the dynamic material model. The results indicate that at a given strain rate, the flow stress of Ni50.9Ti49.1 alloy decreases with the increase in the temperature, whereas in the case of a constant deformation temperature, the flow stress of Ni50.9Ti49.1 alloy increases with the increase in the strain rate. The region where Ni50.9Ti49.1 alloy possesses high η value decreases with the increase in the true strain. In addition, the instability region of Ni50.9Ti49.1 alloy during hot deformation increases with the increase in the true strain, which indicates that the hot workability of Ni50.9Ti49.1 alloy decreases with the increase in the deformation degree. The optimal region in which Ni50.9Ti49.1 alloy is subjected to hot working is determined as the one which possesses high η value, where the temperature lies between 700℃ and 950℃, and the strain rate ranges from 0.005 s-1 to 0.05 s-1.

参考文献/References:

[1] 陆鹏, 赵亚楠, 张艳秋, 等. 镍钛形状记忆合金管材的研究进展[J]. 应用科技, 2013, 40(3):67-74.
[2] 陆鹏, 赵亚楠, 张艳秋, 等. 镍钛形状记忆合金管滚珠热旋压成形数值模拟[J]. 应用科技, 2013, 40(4):73-78.
[3] 陆鹏, 赵亚楠, 张艳秋, 等. 基于不同减薄量的镍钛合金管滚珠旋压成形分析[J]. 应用科技, 2013, 40(1):1-8.
[4] ARUN BABU K, MANDAL S, ATHREYA C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials and Design, 2017, 115(2):262-275.
[5] WANG Z, WANG X, ZHU Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy[J]. Journal of alloys and compounds, 2017, 692(1):149-154.
[6] ZENG S, ZHAO A, JIANG H, et al. Flow behavior and processing maps of Ti-44.5Al-3.8Nb-1.0Mo-0.3Si-0.1B alloy[J]. Journal of alloys and compounds, 2017, 698(3):786-793.
[7] PRASAD Y V R K, SASIDHARA S. Hot working guide:A compendium of processing maps[M]. Ohio:ASM International, Materials Park, 1997:2-10.
[8] ZENG W D, ZHOU Y G, ZHOU J, et al. Recent development of processing map theory[J]. Rare metal materials and engineering, 2006, 35(5):673-677.
[9] ZIEGLER H, SNEEDON IN, HILL R. Progress in solid mechanics[M]. New York:Wiley, 1963.
[10] ?UKASZEK-SOIEK A, KRAWCZYK J. The analysis of the hot deformation behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo alloy, using processing maps, a map of microstructure and of hardness[J]. Materials design, 2015, 65:165-173.
[11] MOMENI A, DEHGHANI K, EBRAHIMI G R. Modeling the initiation of dynamic recrystallization using a dynamic recovery model[J]. Journal of alloys and compounds, 2011, 509(39):9387-9393.
[12] QUAN G Z, ZHAO L, CHEN T, et al. Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature[J]. Materials science and engineering:A, 2012, 538:364-373.
[13] PU E X, ZHENG W J, XIANG J Z, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654[J]. Materials science and engineering:A, 2014, 598:174-182.

相似文献/References:

[1]陆鹏,赵亚楠,张艳秋,等.镍钛形状记忆合金管材的研究进展[J].应用科技,2013,40(03):67.[doi:10.3969/j.issn.1009-671X.201302001]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Recent research of nickel-titanium shape memory alloy tube[J].Applied science and technology,2013,40(01):67.[doi:10.3969/j.issn.1009-671X.201302001]
[2]陆鹏,赵亚楠,张艳秋,等.镍钛形状记忆合金管滚珠热旋压成形数值模拟[J].应用科技,2013,40(04):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Numerical simulation of hot ball spinning of NiTi shape memory alloy tube[J].Applied science and technology,2013,40(01):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]

备注/Memo

备注/Memo:
收稿日期:2016-05-19。
基金项目:国家自然科学基金项目(51305092).
作者简介:赵亚楠(1979-),女,讲师,博士.
通讯作者:赵亚楠,E-mail:zhaoyanan@126.com.
更新日期/Last Update: 2017-02-10