[1]曾富红,曲志昱,司伟建.极化敏感阵列的DOA及极化参数降维估计算法[J].应用科技,2017,44(03):39-42,90.[doi:10.11991/yykj.201605016]
 ZENG Fuhong,QU Zhiyu,SI Weijian.Dimension-reduction for DOA and polarization estimation based on polarization sensitive array[J].Applied science and technology,2017,44(03):39-42,90.[doi:10.11991/yykj.201605016]
点击复制

极化敏感阵列的DOA及极化参数降维估计算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年03期
页码:
39-42,90
栏目:
现代电子技术
出版日期:
2017-06-05

文章信息/Info

Title:
Dimension-reduction for DOA and polarization estimation based on polarization sensitive array
作者:
曾富红 曲志昱 司伟建
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZENG Fuhong QU Zhiyu SI Weijian
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
DOA估计极化敏感阵列极化MUSIC算法秩亏损MUSIC算法降维优化实时性估计精度
Keywords:
DOA estimationpolarization sensitive arraypolarization MUSIC algorithmrank loss MUSIC algorithmdimensionality reduction optimizationreal-time performanceestimation precision
分类号:
TN911.7
DOI:
10.11991/yykj.201605016
文献标志码:
A
摘要:
为解决极化MUSIC算法运算量大的问题,提出了一种适用于极化敏感阵列的秩亏损MUSIC算法。在极化MUSIC算法的基础上,通过运用矩阵秩亏损原理将谱函数进行降维优化成只与空域参数相关的二维谱函数,大大降低了谱峰搜索过程中的运算量,同时保证了波达方向(DOA)估计精度。在获得入射信号的DOA之后,通过公式可直接计算得到入射信号的极化参数,具有较低的运算量。通过仿真实验可以验证秩亏损MUSIC算法存在着较高的估计精度,并通过将其与极化MUSIC算法的计算复杂度进行对比,可以发现秩亏损MUSIC算法具有较好的实时性,在入射信号相同并含有极化信息的条件下,秩亏损MUSIC算法的计算复杂度相较于极化MUSIC算法降低了104数量级。
Abstract:
To solve the problem that polarization MUSIC algorithm has large computational complexity,a rank loss MUSIC algorithm suitable for polarization sensitive array was proposed.On the basis of polarization MUSIC algorithm,using the principle of matrix rank loss to reduce the dimensionality of the spectral function to two-dimensional spectral function related to the airspace parameters,the computation significantly was decreased but also guarantees the direction of arrival (DOA) estimation accuracy.After getting the DOA of the incident signal,the polarization parameters can be directly calculated by formula which has low computational complexity.Simulation results show that the proposed algorithm has high estimation precision.The proposed algorithm has better real-time performance compared with that polarization MUSIC algorithm.

参考文献/References:

[1] MAO X P, LIU Y T. Null phase-shift polarization filtering for high-frequency radar[J]. IEEE transactions on aerospace and electronic systems, 2007, 43(4):1397-1408.
[2] PASTINA D, LOMBARDO P, BUCCIARELLI T. Adaptive polarimetric target detection with coherent radar. I. Detection against Gaussian background[J]. IEEE transactions on aerospace and electronic systems, 2001, 37(4):1194-1206.
[3] 肖顺平. 宽带极化雷达目标识别的理论与应用[D]. 长沙:国防科技大学, 1999:26-33.
[4] KIM K T, SEO D K, KIM H T. Efficient radar target recognition using the MUSIC algorithm and invariant features[J]. IEEE transactions on antennas and propagation, 2002, 50(3):325-337.
[5] NEHORAI A, PALDI E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE transactions on signal processing, 1994, 42(2):376-398.
[6] MIRON S, YANG S, BRIE D, et al. A multilinear approach of direction finding using a sensor-array with multiple scales of spatial invariance[J]. IEEE transactions on aerospace and electronic systems, 2015:00.
[7] 庄钊文. 极化敏感阵列信号处理[M]. 北京:国防工业出版社, 2005:200-213.
[8] 徐友根, 刘志文, 龚晓峰. 极化敏感阵列信号处理[M]. 北京:北京理工大学出版社, 2013:10-21.
[9] 李京书, 陶建武. 信号DOA和极化信息联合估计的降维四元数MUSIC方法[J]. 电子与信息学报, 2011, 33(1):106-111.
[10] ZHANG X, CHEN C, LI J, et al. Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC[J]. Multidimensional systems and signal processing, 2014, 25(1):67-82.
[11] 司伟建, 朱曈, 张梦莹. 平面极化天线阵列的DOA及极化参数降维估计方法[J]. 通信学报, 2014, 12:28-35.

相似文献/References:

[1]刁鸣,袁熹,高洪元,等.一种运动目标的相干信号源DOA跟踪方法[J].应用科技,2008,35(11):26.
 DIAO Ming,YUAN Xi,GAO Hong-yuan,et al.An approach of estimating DOA for coherent signals from moving sources[J].Applied science and technology,2008,35(03):26.
[2]韩晓东,刁鸣.冲激噪声背景下基于虚拟阵列变换的DOA估计[J].应用科技,2010,37(01):8.[doi:10.3969/j.issn.1009-671X.2010.01.003]
 HAN Xiao-dong,DIAO Ming.DOA estimation based on virtual array transformation in an impulsive noise environment[J].Applied science and technology,2010,37(03):8.[doi:10.3969/j.issn.1009-671X.2010.01.003]
[3]安春莲,刁鸣,高洪元.基于量子遗传算法的子空间拟合测向[J].应用科技,2010,37(03):49.[doi:10.3969/j.issn.1009-671X.2010.03.013]
 AN Chun-lian,DIAO Ming,GAO Hong-yuan.DOA estimation using subspace fitting based on quantum genetic algorithm[J].Applied science and technology,2010,37(03):49.[doi:10.3969/j.issn.1009-671X.2010.03.013]
[4]韩晓东,刁鸣.冲击噪声背景下均匀圆阵相干信源的DOA估计[J].应用科技,2012,39(01):35.[doi:10.3969/j.issn.1009-671X. 201110008]
 HAN Xiaodong,DIAO Ming.DOA estimation of uniform circular array and coherent sources in an impulsive noise environment[J].Applied science and technology,2012,39(03):35.[doi:10.3969/j.issn.1009-671X. 201110008]
[5]郜丽鹏,杜旭华.基于变分稀疏贝叶斯学习的DOA估计[J].应用科技,2018,45(06):32.[doi:10.11991/yykj.201712017]
 GAO Lipeng,DU Xuhua.Direction-of-arrival (DOA) estimation based on variational sparse Bayesian learning[J].Applied science and technology,2018,45(03):32.[doi:10.11991/yykj.201712017]

备注/Memo

备注/Memo:
收稿日期:2016-5-23。
基金项目:航空科学基金项目(201401P6001).
作者简介:曾富红(1993-),女,硕士研究生;司伟建(1971-),男,研究员,博士生导师.
通讯作者:曾富红,E-mail:fuhongzeng@163.com
更新日期/Last Update: 2017-07-07