[1]梁向东,银建中.实验与MD模拟探究基于LS-45的超临界CO2微乳液结构[J].应用科技,2017,(04):70-74.[doi:10.11991/yykj.201605021]
 LIANG Xiangdong,YIN Jianzhong.Study on micro-structure of scCO2 microemulsion with LS-45by experiment and molecular dynamics simulation method[J].yykj,2017,(04):70-74.[doi:10.11991/yykj.201605021]
点击复制

实验与MD模拟探究基于LS-45的超临界CO2微乳液结构(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年04期
页码:
70-74
栏目:
材料与化学
出版日期:
2017-08-05

文章信息/Info

Title:
Study on micro-structure of scCO2 microemulsion with LS-45by experiment and molecular dynamics simulation method
作者:
梁向东 银建中
大连理工大学 化工机械学院, 辽宁 大连 116024
Author(s):
LIANG Xiangdong YIN Jianzhong
School of Chemical Machinery, Dalian University of Technology, Dalian 116024, China
关键词:
超临界CO2微乳液相行为临界微乳液浓度表面活性剂分子动力学模拟纳米材料
Keywords:
supercritical CO2microemulsionphase behaviorcritical microemulsion concentrationsurfactantMD simulationnano material
分类号:
TK6;O621.25
DOI:
10.11991/yykj.201605021
文献标志码:
A
摘要:
超临界CO2微乳液具有特殊的微观结构,这是其在萃取、反应及纳米材料制备领域广泛应用的前提。文中通过相行为实验和分子动力学模拟相结合的方法,测试了基于表面活性剂LS-45超临界CO2微乳液的临界微乳液浓度及溶水能力。运用分子动力学模拟,从分子级别上考察了微乳液的聚集过程,并分析了聚团的结构信息。实验结果表明,LS-45微乳液体系的临界微乳液浓度为0.002 71 mol/L,体系溶水能力随压力的增大而增大。模拟结果显示,水分子与表面活性剂分子的聚集轨迹基本同步,表面活性剂数量对微乳液内水核的最终聚集程度影响不大。
Abstract:
Supercritical CO2 microemulsion has special micro-structure, which is the prerequisite for its wide application in the field of extraction, reaction and nano material preparation. Based on the method of phase behavior experiment and molecular dynamics(MD) simulation, the ability of loading water and the critical microemulsion concentration of supercritical CO2 microemulsion based on surface active agent LS-45 were tested. The aggregation process of microemulsion was investigated at molecular level through MD simulation, so did the structure information of the cluster. The experimental results show that the critical microemulsion concentration of LS-45 microemulsion is 0.002 71 mol/L, and the ability of loading water of the system increases with the increase of pressure. The simulation results show that the aggregation trajectory of water and surfactant is consistent. The number of surfactant has no effect on the degree of aggregation of water molecules.

参考文献/References:

[1] FULTON J L, SMITH R D. Reverse micelle and microemulsion phases in supercritical fluids[J]. Journal of physical chemistry, 1988, 92(10):2903-2907.
[2] OHDE H, YE X-R, WAI C M, et al. Synthesizing silver halide nanoparticles in supercritical carbon dioxide utilizing a water-in-CO2 microemulsion[J]. Chemical communications, 2000, 23:2353-2354.
[3] WANG J S, CHIU K. Metal extraction from solid matrices using a two-surfactant microemulsion in neat supercritical carbon dioxide[J]. Microchimica acta, 2009, 167(1/2):61-65.
[4] WANG J S F, WAI C M. Transporting metal ions using reverse micelles in alcohol modified supercritical carbon dioxide[J]. Journal of supercritical fluids, 2007, 40(2):176-182.
[5] YU W, ZHOU D, YIN J Z, et al. Phase behavior of supercritical CO2 microemulsion with AOT and its solubilization properties of 1,3-propanediol[J]. Separation science and technology, 2013, 48(13):1982-1986.
[6] YU W, ZHOU D, YIN J-Z, et al. Selective solubilization of 1,3-propanediol using a water-supercritical CO2 microemulsion with LS-45 as surfactant[J]. Rsc advances, 2013, 3(20):7585.
[7] YU W, ZHOU D, YIN J-Z, et al. Phase behavior of supercritical CO2 microemulsions with surfactant Ls-36 and selective solubilization of propane-1,3-diol[J]. Journal of chemical & engineering data, 2013, 58(3):814-820.
[8] LIU J, CHENG S, ZHANG J, et al. Reverse micelles in carbon dioxide with ionic-liquid domains[J]. Angew chem int ed engl, 2007, 46(18):3313-3315.
[9] SALANIWAL S, CUI S T, CUMMINGS P T, et al. Self-assembly of reverse micelles in water/surfactant/carbon dioxide systems by molecular simulation[J]. Langmuir, 1999, 15(16):5188-5192.
[10] LU L Y, BERKOWITZ M L. Molecular dynamics simulation of a reverse micelle self assembly in supercritical CO2[J]. Journal of the american chemical society, 2004, 126(33):10254-10255.
[11] CHAITANYA V S V, SENAPATI S. Self-assembled reverse micelles in Supercritical CO2 entrap protein in native state[J]. Journal of the american chemical society, 2008, 130(6):1866-1870.
[12] SAGISAKA M, KOIKE D, MASHIMO Y, et al. Water/supercritical CO2 microemulsions with mixed surfactant systems[J]. Langmuir, 2008, 24(18):10116-10122.
[13] MOHAMED A, ARDYANI T, SAGISAKA M, et al. Economical and efficient hybrid surfactant with low fluorine content for the stabilisation of water-in-CO2 microemulsions[J]. Journal of supercritical fluids, 2015, 98:127-136.
[14] MOHAMED A, SAGISAKA M, HOLLAMBY M, et al. Hybrid CO2-philic surfactants with low fluorine content[J]. Langmuir, 2012, 28(15):6299-6306.
[15] SAGISAKA M, IWAMA S, ONO S, et al. Nanostructures in water-in-CO2 microemulsions stabilized by double-chain fluorocarbon solubilizers[J]. Langmuir, 2013, 29(25):7618-7628.
[16] EASTOE J, PAUL A, NAVE S, et al. Micellization of hydrocarbon surfactants in supercritical carbon dioxide[J]. Journal of the American chemical society, 2001, 123(5):988-989.
[17] HOLLAMBY M J, TRICKETT K, MOHAMED A, et al. Tri-chain hydrocarbon surfactants as designed micellar modifiers for supercritical CO2[J]. Angew chem int ed engl, 2009, 48(27):4993-4995.
[18] SARKAR B, ADHIKARI S, BAER M. Space-time contours to treat intense field-dressed molecular states. Ⅱ. Applications[J]. J chem phys, 2007, 127(1):014302.
[19] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. J chem phys, 1984, 81(8):3684.
[20] DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald:an N·log(N) method for ewald sums in large systems[J]. J chem phys, 1993, 98(12):10089.
[21] VANOMMESLAEGHE K, HATCHER E, ACHARYA C, et al. CHARMM general force field:a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J]. Journal of computational chemistry, 2010, 31(4):671-690.
[22] HARRIS J G, YUNG K H. Carbon dioxides liquid-vapor coexistence curve and critical properties as predicted by a simple molecular-model[J]. Journal of physical chemistry, 1995, 99(31):12021-12024.
[23] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The journal of physical chemistry, 1987, 91(24):6269-6271.
[24] 崔正刚. 表面活性剂、胶体与界面化学基础[M].北京:化学工业出版社, 2013.
[25] LIU J C, HAN B X, WANG Z W, et al. Solubility of Ls-36 and LS-45 surfactants in supercritical CO2 and loading water in the CO2/water/surfactant systems[J]. Langmuir, 2002, 18(8):3086-3089.

备注/Memo

备注/Memo:
收稿日期:2016-05-21。
基金项目:国家自然科学基金项目(21376045);国家自然科学基金青年科学基金项目(21506027).
作者简介:梁向东(1991-),男,硕士研究生;银建中(1964-),男,教授,博士.
通讯作者:银建中,E-mail:jzyin@dlut.edu.cn.
更新日期/Last Update: 2017-08-24