[1]王伟,孙守超,郭春雨,等.船舶最佳纵倾及节能[J].应用科技,2017,(05):1-4.[doi:10.11991/yykj.201607003]
 WANG Wei,SUN Shouchao,GUO Chunyu,et al.Best trim and energy saving effect of ships[J].yykj,2017,(05):1-4.[doi:10.11991/yykj.201607003]
点击复制

船舶最佳纵倾及节能(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
1-4
栏目:
船舶与海洋工程
出版日期:
2017-10-05

文章信息/Info

Title:
Best trim and energy saving effect of ships
作者:
王伟 孙守超 郭春雨 魏少鹏
哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Wei SUN Shouchao GUO Chunyu WEI Shaopeng
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
船舶纵倾阻力预报计算流体动力学KCS湿表面积水线长度水线面形状节能
Keywords:
ship trimresistance predictionCFD (computational fluid dynamics)KCS (KRISO Container Ship)wet surface areawaterline lengthwater plane shapeenergy saving
分类号:
U673.3
DOI:
10.11991/yykj.201607003
文献标志码:
A
摘要:
随着船舶节能理念的逐渐深入,纵倾优化的作用机理是研究的热点,目前主要采用数值计算和模型试验相结合的方法来研究船舶纵倾发生变化后,对于湿表面积、水线长度、水线面形状以及总阻力的影响。文中利用计算流体动力学(computational fluid dynamics,CFD)方法对KCS船进行不同纵倾角下的阻力预报,得到船舶的最佳纵倾角及其节能效果,同时分析了当船舶纵倾角度发生变化后对船体的水线面形状等的影响。结果表明,对于KCS当其以设计航速临近的速度航行时,其纵倾角度控制在尾倾0.84°左右时,其节能效果最好,约节能4%~6%。
Abstract:
With the concept of ship energy saving gradually spreading, the optimization mechanism of trim is a hotspot of research, at present the main method of numerical calculation and model test are combined to study how the wet surface area, the waterline length, waterline shape and the total resistance will change with the ship trim. The study found that ship in a different speed and different ballast condition exists an optimal angle of trim with the minimum resistance. CFD(computational fluid dynamics) method was used to analyze the KCS(KRISO container ship) resistance under different trim angle, then get the best pitch angle of the ship and its energy-saving effect, and at the same time, the shape of hull waterline was discussed. Results show that KCS sailing under the speed nearly designed with the trim angle about 0.84° has the best energy-saving effect, which will reach about 4%~6%.

参考文献/References:

[1] 彭斌. 船舶节能技术综述[J]. 舰船科学技术, 2005, 27(S1):3-6, 30.
[2] 李达. 船舶节能技术研究[D]. 大连:大连理工大学, 2013.
[3] IMO. IMO policies and practices related to reduction of greenhouse gas emissions from ships[R].Resolution A. 963(23), IMO, 2003.
[4] IMO. Calculation procedures of the numerator of the new ship design CO2 index[R]. MEPC 58/4/26, IMO, 2008.
[5] IMO. Interim guidelines on the method of calculation of the energy efficiency design index for new ships[R]. MEPC.1/Circ.681, IMO, 2009.
[6] 章幂. 不同纵倾下的船舶阻力研究[C]//第九届武汉地区船舶与海洋工程研究生学术论坛. 武汉, 2016:6.
[7] HAMASAKI J I, HIMENO Y, TAHARA Y. Hull form optimization by nonlinear programming:improvement of stern for for wave and visscous resistance[J]. Journal of the Kansai society of naval architects, Japan, 1996, 228:79-90.
[8] 周占群, 宋家瑾, 徐惠民, 等. "门"字型货船的最佳纵倾节能技术研究[J]. 交通部上海船舶运输科学研究所学报, 1986(1):47-64.
[9] 邱斌彬. 船舶纵倾优化[J]. 中国船检, 2014(2):70-74.
[10] 吴明, 王骁, 应荣镕, 等. 船舶浅水航行下沉量和纵倾的数值计算[J]. 船舶, 2013, 24(3):7-11.
[11] KIM J. RANS computations for KRISO container ship and VLCC tanker using the WAVIS code[C]//Proceedings of CFD Workshop. Tokyo, 2005.
[12] 冯佰威, 叶诗瑶, 常海超. 基于CFD的KCS船舶艏部型线优化研究[J]. 江苏船舶, 2016, 33(6):1-5.
[13] 王慧婷, 毕毅. 基于体积力法的全附体KCS型船模PMM运动数值模拟[J]. 中国舰船研究, 2016, 11(4):29-37, 66.
[14] 张健, 方杰, 范波芹. VOF方法理论与应用综述[J]. 水利水电科技进展, 2005, 25(2):67-70.
[15] 古成中, 吴新跃. 有限元网格划分及发展趋势[J]. 计算机科学与探索, 2008, 2(3):248-259.

备注/Memo

备注/Memo:
收稿日期:2017-07-05。
基金项目:国家自然科学基金项目(51209048,41176074,51409063);工信部高技术船舶科研项目(G014613002);哈尔滨工程大学青年骨干教师支持计划项目(HEUCFQ1408).
作者简介:王伟(1982-),男,工程师;郭春雨(1981-),男,教授,博士.
通讯作者:孙守超,E-mail:sunshouchao@hrbeu.edu.cn.
更新日期/Last Update: 2017-11-30