[1]谢红,曹欢,刘利国.基于iBeacon和多自由度MEMS的室内融合定位技术研究[J].应用科技,2017,(05):85-92.[doi:10.11991/yykj.201607015]
 XIE Hong,CAO Huan,LIU Liguo.Indoor positioning technology research based on iBeacon fusion and multiple degree of freedom of MEMS[J].yykj,2017,(05):85-92.[doi:10.11991/yykj.201607015]
点击复制

基于iBeacon和多自由度MEMS的室内融合定位技术研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
85-92
栏目:
现代电子技术
出版日期:
2017-10-05

文章信息/Info

Title:
Indoor positioning technology research based on iBeacon fusion and multiple degree of freedom of MEMS
作者:
谢红 曹欢 刘利国
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
XIE Hong CAO Huan LIU Liguo
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
室内定位行人航位推算蓝牙定位iBeacon定位二维码定位单点校正融合定位定位系统
Keywords:
indoor positioningpedestrian dead reckoning (PDR)bluetooth positioningiBeacon positioningQr code positioningsingle point correctionfusion locationposition system
分类号:
TN911.73
DOI:
10.11991/yykj.201607015
文献标志码:
A
摘要:
由于GPS信号在室内环境下不能有效地实现定位和导航,因此精确的室内定位技术仍然是一个十分活跃的研究课题。行人航迹推算(PDR)可以使用智能手机的自带传感器实现室内连续定位。然而,它会随着行走距离的变长产生很大的累计误差。因此,提出一种基于iBeacon和手机MEMS相融合的精确的室内定位方法。在行走路径上加入iBeacon信标和二维码信标,系统自适应地选择相应的校正模式纠正PDR算法产生的累计误差。最后完成了基于Android平台的室内定位软件的开发。实验结果显示,文中方法的定位结果与PDR定位结果相比较,定位精度有了显著的提高,融合定位的平均误差在2 m以内,定位精度满足项目需要。
Abstract:
Since GPS signals are denied in indoor environments, the technology for accurate indoor localization is still an active on-going research topic. The pedestrian dead reckoning (PDR) can be applied for localization using smartphone sensors. Unfortunately, it will drift with walking distance. Therefore, in this paper, a framework combining smartphone sensors MEMS and iBeacons was presented for accurate indoor localization. By joining iBeacon beacons and two-dimensional code beacon system in the walking path, the system can adaptively select the appropriate correction mode to correct the accumulated error PDR algorithm produces, then finally complete Android-based indoor positioning software development. Experimental results show that the positioning accuracy in this method has been significantly improved compared with the PDR, with an average error of fusion location within two meters, the positioning accuracy meets the need of project.

参考文献/References:

[1] KULKARNI V Y, SINHA P K. Pruning of random forest classifiers:A survey and future directions[C]//Proceedings of 2012 International Conference on Data Science & Engineering (ICDSE). Cochin, Kerala, India, 2012:64-68.
[2] 徐伟. 基于Android手机的室内定位技术研究与实现[D]. 武汉:华中师范大学, 2014.
[3] ZDRUBA G V, HUBER M, KARNANGAR F A, et al. Monte Carlo sampling based in-home location tracking with minimal RF infrastructure requirements[C]//Proceedings of IEEE Global Telecommunications Conference.Dallas, TX, USA, 2004:3624-3629.
[4] 刁石京. 消费电子领域的北斗产业化推广[C]//2014上海国际导航产业与科技发展论坛. 上海, 2014:11.
[5] WANG He, SEN S, ELGOHARY A, et al. No need to war-drive:unsupervised indoor localization[C]//Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services. Low Wood Bay, Lake District, UK. 2012:197-210.
[6] SUBBU K P, GOZICK B, DANTU R. LocateMe:Magnetic-fields-based indoor localization using smartphones[J]. ACM transactions on intelligent systems and technology, 2013, 4(4):73.
[7] 胡天琨. 基于Android的室内导航定位系统设计与实现[D]. 上海:东华大学, 2013.
[8] 杨洲, 汪云甲, 陈国良, 等. 超宽带室内高精度定位技术研究[J]. 导航定位学报, 2014(4):31-35.
[9] 周宝定, 李清泉, 毛庆洲, 等. 用户行为感知辅助的室内行人定位[J]. 武汉大学学报:信息科学版, 2014, 39(6):719-723.
[10] 邓中亮, 胡月舟, 袁壮, 等. 多模定位信号采集终端跨时钟域信号同步技术研究[C]//第五届中国卫星导航学术年会.南京, 2014:5.
[11] 夏林元, 吴东金. 多基站模式下的实时与自适应室内定位方法研究[J]. 测绘通报, 2012(11):1-6.
[12] 田辉, 夏林元, 莫志明, 等. 基于无线局域网信号的城区室内外无缝定位技术[J]. 桂林理工大学学报, 2013, 33(2):302-306.
[13] AZIZYAN M, CONSTANDACHE L, CHOUDHURY R R. SurroundSense:mobile phone localization via ambience fingerprinting[C]//Proceedings of the 15th Annual International Conference on Mobile Computing and Networking. Beijing, China, 2009:261-272.
[14] LI Fan, ZHAO Chunshui, DING Guanzhong, et al. A reliable and accurate indoor localization method using phone inertial sensors[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Pittsburgh, Pennsylvania, 2012:421-430.
[15] JIN Yunye, TOH H S, SOH W S, et al. A robust dead-reckoning pedestrian tracking system with low cost sensors[C]//Proceedings of 2011 IEEE International Conference on Pervasive Computing and Communications. Seattle, WA, USA, 2011:222-230.
[16] GUO Zhongwen, GUO Ying, HONG Feng, et al. Perpendicular intersection:locating wireless sensors with mobile beacon[J]. IEEE transactions on vehicular technology, 2010, 59(7):3501-3509.
[17] JIMENEZ A R, SECO F, PRIETO C, et al. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]//Proceedings of IEEE International Symposium on Intelligent Signal Processing. Budapest, Hungary, 2009:37-42.
[18] 卞合善. 基于蓝牙4.0低功耗室内定位研究[D]. 北京:北京邮电大学, 2015.
[19] 王琦. 基于RSSI测距的室内定位技术[J]. 电子科技, 2012, 25(6):64-66, 78.
[20] 钱伟捷. RSSI测距原理研究[J]. 知识窗:教师版, 2014(7):47.

相似文献/References:

[1]闫保中,张帅,张宇.基于RFID的室内人员定位系统的设计与实现[J].应用科技,2011,(11):39.[doi:10.3969/j.issn.1009-671X.2011.11.010]
 YAN Baozhong,ZHANG Shuai,ZHANG Yu.Design and implementation of the indoor personnel positioning system based on RFID[J].yykj,2011,(05):39.[doi:10.3969/j.issn.1009-671X.2011.11.010]

备注/Memo

备注/Memo:
收稿日期:2016-07-17。
基金项目:国家重点研究计划(SQ2016YFGX040104).
作者简介:谢红(1962-),女,教授,博士生导师.
通讯作者:曹欢,E-mail:610688346@qq.com.
更新日期/Last Update: 2017-11-30