[1]杨传雷,马传杰,王银燕,等.相继增压柴油机调速控制算法研究[J].应用科技,2017,(05):30-34.[doi:10.11991/yykj.201607019]
 YANG Chuanlei,MA Chuanjie,WANG Yinyan,et al.Research on the speed regulation control algorithms for sequential turbocharging diesel engine[J].yykj,2017,(05):30-34.[doi:10.11991/yykj.201607019]
点击复制

相继增压柴油机调速控制算法研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
30-34
栏目:
动力与能源工程
出版日期:
2017-10-05

文章信息/Info

Title:
Research on the speed regulation control algorithms for sequential turbocharging diesel engine
作者:
杨传雷 马传杰 王银燕 胡松
哈尔滨工程大学 动力与能源工程学院, 黑龙江 哈尔滨 150001
Author(s):
YANG Chuanlei MA Chuanjie WANG Yinyan HU Song
College of Energy and Power Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
柴油机相继增压调速PID模糊控制算法仿真
Keywords:
diesel enginesequential turbochargingspeed governingPIDfuzzycontrolalgorithmsimulation
分类号:
TP273
DOI:
10.11991/yykj.201607019
文献标志码:
A
摘要:
为了精确控制相继增压柴油机调速过程,在GT-power与MATLAB/Simulink联合仿真环境下,基于常规PID(proportion integration differentiation)和模糊自适应PID两种控制算法分别建立了TBD234V12型相继增压柴油机调速控制模型,进行仿真和对比研究,并将标定工况下气缸压力仿真值与实验值对比,验证了模型的准确性。结果表明,相较于经典PID算法,模糊自适应PID算法响应快、超调量少,控制效果较优。
Abstract:
In order to precisely control the speed regulation process of a sequential turbocharging diesel engine, in the joint simulation environment of GT-power and MATLAB/SIMULINK, the speed regulation control models on TBD234V12 sequential turbocharging diesel engine were respectively established on the basis of the classical PID and the fuzzy self-adapted PID(proportion integration differentiation) control algorithm. The simulation and the comparative research were carried out, in addition, the simulative value of the cylinder pressure under the declared working conditions were compared with the testing value, so as to verify the accuracy of the model. The simulation results show that the fuzzy self-adapted PID control algorithm has a better effect than the classical PID algorithm, including fast response, lower overshoot and better control effect.

参考文献/References:

[1] 刘宏斌. 《MARPOL73/78》附则Ⅵ与柴油机NOx排放控制技术[J]. 船海工程, 2006, 35(5):30-32.
[2] DOO H W, LEE Y C. The study on ensuring effectiveness of IMO instrument regarding GHG emission from ships-focusing on MARPOL73/78 annex VI[J]. Journal of navigation and port research, 2013, 37(5):511-517.
[3] 王贺春, 聂志斌, 刘丕人, 等. 采用相继增压技术改善柴油机低负荷性能的试验研究[J]. 哈尔滨工程大学学报, 2007, 28(8):870-874.
[4] 夏思为, 段书凯, 王丽丹, 等. 基于忆阻神经网络PID控制器设计[J]. 计算机学报, 2013, 36(12):2577-2586.
[5] 屈毅, 宁铎, 赖展翅, 等. 温室温度控制系统的神经网络PID控制[J]. 农业工程学报, 2011, 27(2):307-311.
[6] 刘军华, 巫影, 扬晓伟. 基于改进遗传算法的柴油机调速控制研究[J]. 舰船电子工程, 2013, 33(8):164-166.
[7] ZHOU Liying, ZHAO Guoshu. Application of fuzzy-PID control algorithm in uniform velocity temperature control system of resistance furnace[J]. Chinese journal of scientific instrument, 2008, 29(2):405-409.
[8] PAN I, DAS S, GUPTA A. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay[J]. ISA transactions, 2011, 50(1):28-36.
[9] RUBAAI A, CASTRO-SITIRICHE M J, OFOLI A R. Design and implementation of parallel fuzzy PID controller for high-performance brushless motor drives:an integrated environment for rapid control prototyping[J]. IEEE transactions on industry applications, 2008, 44(4):1090-1098.
[10] 林岳松, 金学波. 神经网络与参数自寻优PID在柴油机转速控制系统中的应用[J]. 电气传动自动化, 2000, 22(1):32-34.
[11] 杨益兴, 崔大连, 周爱军. 模糊自适应PID控制器及Simulink仿真实现[J]. 舰船电子工程, 2010, 30(4):127-130.
[12] 陶永华. 新型PID控制及其应用——第四讲模糊PID控制[J]. 工业仪表与自动化装置, 1998(1):57-62, 27.
[13] 宋国民, 黄茂杨, 季晓华, 等. 基于参数自调整模糊PID算法的前馈共轨压力控制[J]. 东南大学学报:自然科学版, 2005, 35(3):465-468.
[14] 王贺春, 王玥, 徐荣, 等. 核电应急柴油发电机组加载过程建模与仿真[J]. 哈尔滨工程大学学报, 2015, 36(6):784-788.
[15] 胡松, 王贺春, 杨洪衬, 等. 柴油机BP-PID调速器性能改善研究[J]. 哈尔滨工程大学学报, 2015, 36(12):1590-1595.

相似文献/References:

[1]孙俊.柴油机活塞温度场有限元分析的简单方法[J].应用科技,2009,(06):69.[doi:doi:10.3969/j.issn.1009-671X.2009.06.017]
 SUN Jun.A simple method of finite element analysis for diesel piston temperature field[J].yykj,2009,(05):69.[doi:doi:10.3969/j.issn.1009-671X.2009.06.017]
[2]杨传雷,刘春罡,罗巩固,等.柴油机相继增压系统信号模拟器的开发[J].应用科技,2010,(08):45.[doi:10.3969/j.issn.1009-671X.2010.08.011]
 YANG Chuan-lei,LIU Chun-gang,LUO Gong-gu,et al.Development of signal simulation generator for the sequentially turbocharged system of a diesel[J].yykj,2010,(05):45.[doi:10.3969/j.issn.1009-671X.2010.08.011]
[3]张子英,张光炯,张保成,等.柴油机主副连杆有限元分析方法[J].应用科技,2010,(11):5.[doi:10.3969/j.issn.1009-671X.2010.11.002]
 ZHANG Zi-ying,ZHANG Guang-jiong,ZHANG Bao-cheng,et al.Finite element analytic method of chiefvice connecting rods[J].yykj,2010,(05):5.[doi:10.3969/j.issn.1009-671X.2010.11.002]
[4]袁帅,王贺春,林娉羽,等.两种米勒循环方案对发动机性能影响对比[J].应用科技,2017,(05):17.[doi:10.11991/yykj.201612020]
 YUAN Shuai,WANG Hechun,LIN Pinyu,et al.Contrast on the effects of two miller cycle schemes on engine performance[J].yykj,2017,(05):17.[doi:10.11991/yykj.201612020]
[5]黄建余,崔欣洁,杨传雷,等.柴油机相继增压防喘振控制器的开发[J].应用科技,2011,(06):1.[doi:10.3969/j.issn.1009-671X.2011.06.001]
 HUANG Jianyu,CUI Xinjie,YANG Changlei,et al.Development of an anti- surge controller for diesel engine sequential turbocharging system[J].yykj,2011,(05):1.[doi:10.3969/j.issn.1009-671X.2011.06.001]
[6]王伟才,王银燕,王贺春.相继增压柴油机进排气系统建模与增压器切换点计算分析[J].应用科技,2005,(05):46.
[7]王伟才孙俊,王银燕,曾春荣.相继增压柴油机线性模型动态实时仿真[J].应用科技,2005,(06):53.
[8]左大军,王银燕,杨传雷,等.柴油机相继增压控制系统硬件可靠性研究[J].应用科技,2014,(04):65.
 ZUO Dajun,WANG Yinyan,YANG Chuanlei,et al.Investigation of hardware reliability of sequential turbocharging control system with diesel engine[J].yykj,2014,(05):65.
[9]胡松,王银燕,孙永瑞,等.基于GT-power和Simulink的相继增压切出过程仿真研究[J].应用科技,2015,(05):55.[doi:10.11991/yykj.201410007]
 HU Song,WANG Yinyan,SUN Yongrui,et al.Simulation of sequential turbochargingcutting out process based on GT-power and Simulink[J].yykj,2015,(05):55.[doi:10.11991/yykj.201410007]

备注/Memo

备注/Memo:
收稿日期:2016-07-21。
基金项目:国家科技支撑计划(2015BAG16B001).
作者简介:杨传雷(1978-),男,讲师,博士.
通讯作者:马传杰,E-mail:dalei1999@163.com.
更新日期/Last Update: 2017-11-30