[1]卫海霞,沈剑波,王宏涛.基于标准粒子群优化算法的压电片位置与尺寸优化[J].应用科技,2017,(05):62-69.[doi:10.11991/yykj.201610005]
 WEI Haixia,SHEN Jianbo,WANG Hongtao.Location and size optimization of piezoelectric patch based on standard PSO algorithm[J].yykj,2017,(05):62-69.[doi:10.11991/yykj.201610005]
点击复制

基于标准粒子群优化算法的压电片位置与尺寸优化(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
62-69
栏目:
机电工程
出版日期:
2017-10-05

文章信息/Info

Title:
Location and size optimization of piezoelectric patch based on standard PSO algorithm
作者:
卫海霞 沈剑波 王宏涛
南京航空航天大学 机电学院, 江苏 南京 210016
Author(s):
WEI Haixia SHEN Jianbo WANG Hongtao
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
悬臂梁振动能量回收压电片位置优化尺寸优化能量方程标准粒子群算法仿真分析
Keywords:
cantilevervibration energy harvestingpiezoelectric patchlocation optimizationsize optimizationenergy equationstandard particle swarm optimization algorithmsimulation analysis
分类号:
TK01
DOI:
10.11991/yykj.201610005
文献标志码:
A
摘要:
悬臂梁式压电振动能量回收装置上压电片的粘贴位置和尺寸是影响回收电能的重要因素。提出了采用标准粒子群算法对压电片粘贴位置和尺寸进行同时优化的方法。首先推导了悬臂梁能量回收装置的能量方程;然后以能量方程为目标函数、运用标准粒子群优化算法获得了前三阶模态下压电片粘贴位置和尺寸优化结果;最后运用Abaqus软件计算得到前三阶模态下压电振动能量回收装置的固有频率和点电压,并由能量方程计算得到开路能量,根据点电压和开路能量分析得到了压电片最优位置和尺寸。运用标准粒子群算法获得的压电片位置和尺寸优化结果与仿真分析结果基本吻合:一阶模态下,压电片最优贴片位置在梁根部,最优尺寸约为梁长一半;二阶模态下,最优贴片位置在梁中部,最优尺寸约为梁长一半;三阶模态下,最优贴片位置在梁的三分之二处,最优尺寸约为梁长的三分之一。
Abstract:
The location and size of the piezoelectric patch on the cantilever for vibration energy harvester are the important factors that influence the recovery of the electric energy. A kind of novel method using the standard particle swarm optimization (PSO) algorithm was put forward for optimizing the location and size of the piezoelectric patch. Firstly, the energy equation of the cantilevered vibration energy harvester was analyzed and deduced. Secondly, the optimization program of standard PSO algorithm which takes the energy equation as the objective function was compiled using MATLAB software, so that the optimal location and size of the piezoelectric patch for the first three orders of modes were obtained by running the optimization program. Lastly, the natural frequency and local point voltage of the cantilevered piezoelectric vibration energy harvester for the first three orders of modes were computed by using the Abaqus software, and the open-circuit energy can be calculated using the energy equation, and then the optimal location and size of the piezoelectric patch can be obtained by analyzing the local point voltage and open-circuit energy. The results of the optimal location and size of the piezoelectric patch from implementing the standard PSO algorithm are consistent with the analysis results from Abaqus software. The detailed results are as follows that the optimal location is at the root of the cantilever and the size is about half length of the cantilever under the first mode, and the optimal location is at the middle and the size is about half the length of the beam under the second mode, and they are the two-thirds and about one-third beam length under the third mode.

参考文献/References:

[1] 文晟, 张铁明, 刘旭, 等. 基于压电效应的振动能量回收装置的研究进展[J]. 机械科学与技术, 2010, 29(11):1515-1520.
[2] 边义祥, 杨成华. 基于压电材料的振动能量回收技术现状综述[J]. 压电与声光, 2011, 33(4):611-622.
[3] 阚君武, 唐可洪, 王淑云, 等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学精密工程, 2008, 16(1):71-75.
[4] 袁江波, 谢涛, 陈维山, 等. 悬臂梁压电发电装置的实验研究[J]. 振动与冲击, 2009, 28(7):69-72.
[5] LIANG Zhu, XU Chundong, REN Bo, et al. Optimization of cantilevered piezoelectric energy harvester with a fixed resonance frequency[J]. Technological sciences, 2014, 57(6):1093-1100.
[6] SODANO H A, INMAN D J, PARK G. Comparison of piezoelectric energy harvesting devices for recharging batteries[J]. Journal of intelligent material systems and structures, 2005, 16(10):799-807.
[7] 刘树林, 许小勇, 翟宇毅, 等. 振动模态对压电发电机陶瓷片粘贴位置的影响[J]. 光学精密工程, 2011, 19(8):1801-1809.
[8] LI Hua, HU Shundi, TZOU H S. Size optimization of conical piezoelectric energy harvester[C]//Proceedings of 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). Shenzhen, China, 2011:485-488.
[9] 高瑞贞, 张京军, 郑骥, 等. 基于改进遗传算法主动柔性结构压电元件位置优化[J]. 计算力学学报, 2008, 25(4):542-546.
[10] DHURI K D, SESHU P. Multi-objective optimization of piezo actuator placement and sizing using genetic algorithm[J]. Journal of sound and vibration, 2009, 323(3/4/5):495-514.
[11] HADAS Z, KURFURST J, ONDRUSEK C, et al. Artificial intelligence based optimization for vibration energy harvesting applications[J]. Microsystem technologies, 2012, 18(7/8):1003-1014.
[12] 潘继, 蔡国平. 桁架结构作动器优化配置的粒子群算法[J]. 工程力学, 2009, 26(12):35-39.
[13] 潘继, 陈龙祥, 蔡国平. 柔性板压电作动器的优化位置与主动控制实验研究[J]. 振动与冲击, 2010, 29(2):117-120.
[14] 马天兵, 裘进浩, 季宏丽, 等. 基于粒子群的压电结构多目标同步优化控制[J]. 沈阳工业大学学报, 2012, 34(5):569-575.
[15] 胡海岩. 机械振动基础[M]. 北京:北京航空航天大学出版社, 2005:38-1188.
[16] TZOU H S. Piezoelectric shells:distributed sensing and control of continua[M]. London:Kluwer Academic Publishers, 1993:146.
[17] HU Shundi, CHUANG K C, TZOU H S. PVDF energy harvester on flexible rings[C]//Proceedings of 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). Xiamen, China, 2010:100-105.

备注/Memo

备注/Memo:
收稿日期:2016-10-13。
基金项目:国家自然科学基金项目(11172129).
作者简介:卫海霞(1990-),女,硕士研究生;王宏涛(1968-),女,教授,博士.
通讯作者:王宏涛,E-mail:meehtwang@nuaa.edu.cn.
更新日期/Last Update: 2017-11-30