[1]张勋,赵晓芳,时延利,等.UUV海面红外侦察图像自适应归并直方图拉伸增强算法[J].应用科技,2017,44(06):1-4,20.[doi:10.11991/yykj.201610012]
 ZHANG Xun,ZHAO Xiaofang,SHI Yanli,et al.Adaptive merging histogram stretching enhancement algorithm for UUV’s observing infrared images at sea[J].yykj,2017,44(06):1-4,20.[doi:10.11991/yykj.201610012]
点击复制

UUV海面红外侦察图像自适应归并直方图拉伸增强算法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第44卷
期数:
2017年06期
页码:
1-4,20
栏目:
船舶与海洋工程
出版日期:
2017-12-05

文章信息/Info

Title:
Adaptive merging histogram stretching enhancement algorithm for UUV’s observing infrared images at sea
作者:
张勋1 赵晓芳1 时延利1 赵圣芳2
1. 哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001;
2. 山东科技大学 电气与自动化工程学院, 山东 青岛 266000
Author(s):
ZHANG Xun1 ZHAO Xiaofang1 SHI Yanli1 ZHAO Shengfang2
1. College of Automation, Harbin Engineering University, Harbin 150001, China;
2. Shandong University of Science and Technology, Qingdao 266000, China
关键词:
水下无人航行器红外图像模糊海浪干扰归并直方图增强最大类间方差法轮廓
Keywords:
UUVinfrared imagesfuzzyinfluenced by wavesmerging histogramenhancementOTSUoutline
分类号:
TP399
DOI:
10.11991/yykj.201610012
文献标志码:
A
摘要:
针对水下无人航行器(underwater unmanned vehicle,UUV)海面红外侦查图像灰度级密集、图像模糊、受海浪干扰强烈的特点,提出了一种自适应归并直方图拉伸增强算法。首先,根据灰度直方图得到灰度级值直方图;然后根据最大类间方差法或大津法算法结合灰度级值直方图实现直方图归并阈值的自适应选取,进而得到图像的归并直方图;最后,实现归并直方图的拉伸增强。该算法有效增强了图像的轮廓边缘,突出了目标特征,使海面波浪具有更清晰的纹理,对灰度范围较窄的模糊图像具有较好的处理效果。
Abstract:
Underwater unmanned vehicle (UUV) observed infrared images at sea have many characteristics, such as intensive grayscale, fuzzy image, strong influenced by waves. Aiming at those characteristics, an adaptive merging histogram stretching enhancement algorithm was proposed. First of all, according to the gray histogram the grayscale values histogram was obtained. Then, based on OTSU algorithm combined with grayscale values histogram, the adaptive threshold selection of the merging histogram was achieved, consequently the merging histogram of the image was obtained. Finally, the merging histogram can be stretched and enhanced. The algorithm has effectively enhanced the image outline edge, highlighted the target, made the sea waves have clearer texture and better processing effect at the narrow grey scope of fuzzy images.

参考文献/References:

[1] LI Yi, ZHANG Yunfeng, GENG Aihui, et al. Infrared image enhancement based on atmospheric scattering model and histogram equalization[J]. Optics and laser technology, 2016, 83(3): 99-107.
[2] 徐立敏, 唐振民, 何可可, 等. 基于自适应直方图均衡化的鲁棒性说话人辨认研究[J]. 自动化学报, 2008, 34(7): 752-759.
[3] 王炳健, 刘上乾, 周慧鑫, 等. 基于平台直方图的红外图像自适应增强算法[J]. 光子学报, 2005, 34(2): 299-301
[4] 祝中秋, 李斌. 基于直方图拉伸的图像增强算法及其实现[J]. 信息技术, 2009, 2009(5): 54-57.
[5] DONG Shuai, QI Lin. Adaptive enhancement of sea surface targets in infrared high dynamic range image[C]//Proceedings of SPIE, Beijing, China, 2015: 1-6.
[6] 赵耀宏, 史泽林, 罗海波, 等. 自适应红外图像直方图均衡增强算法[J]. 光电工程, 2008, 35(3): 97-101.
[7] WONG ChinYeow, JIANG Guannan, RAHMAN MdArifur, et al. Histogram equalization and optimal profile compression based approach for colour image enhancement[J]. Journal of visual communication and image representation, 2016, 32(6): 802-813.
[8] WANG Zhenzhou. Automatic segmentation and classification of the reflected laser dots during analytic measurement of mirror surfaces[J]. Optics and laser technology, 2016, 2016(83): 10-22.
[9] 魏巍, 申铉京, 千庆姬. 工业检测图像灰度波动变换自适应阈值分割算法[J]. 自动化学报, 2011, 37(8): 944-953.

相似文献/References:

[1]林智慧,焦淑红,陈涛.海天背景下的红外序列图像仿真[J].应用科技,2009,36(03):31.
 LIN Zhi-hui,JIAO Shu-hong,CHEN Tao.Simulation of infrared image sequences in the sea-sky background[J].yykj,2009,36(06):31.
[2]张勋,马豪伯,李昀澄.行均值梯度与直线拟合联合优化的UUV海面红外图像海天线检测[J].应用科技,2018,45(04):6.[doi:10.11991/yykj.201705019]
 ZHANG Xun,MA Haobo,LI Yuncheng.Sea-sky-line detection of UUV near surface infrared images based on the row-mean value gradient method and linear fitting algorithm[J].yykj,2018,45(06):6.[doi:10.11991/yykj.201705019]

备注/Memo

备注/Memo:
收稿日期:2016-10-26。
基金项目:国家自然科学基金项目(51409055)
作者简介:张勋(1975-),男,副教授,博士后;赵晓芳(1992-),女,硕士研究生
通讯作者:赵晓芳,E-mail:1289016474@qq.com
更新日期/Last Update: 2018-01-06