[1]陈龙飞,马越岗,张鑫,等.影响凝聚核粒子计数器切割粒径的因素敏感性分析与经验公式构建[J].应用科技,2017,(05):22-29.[doi:10.11991/yykj.201611010]
 CHEN Longfei,MA Yuegang,ZHANG Xin,et al.Sensitivity analysis and empirical formula construction of factors influencing the cut-off size of condensation particle counter[J].yykj,2017,(05):22-29.[doi:10.11991/yykj.201611010]
点击复制

影响凝聚核粒子计数器切割粒径的因素敏感性分析与经验公式构建(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
22-29
栏目:
动力与能源工程
出版日期:
2017-10-05

文章信息/Info

Title:
Sensitivity analysis and empirical formula construction of factors influencing the cut-off size of condensation particle counter
作者:
陈龙飞 马越岗 张鑫 张萃琦
北京航空航天大学 能源与动力工程学院, 北京 100191
Author(s):
CHEN Longfei MA Yuegang ZHANG Xin ZHANG Cuiqi
School of Energy and Power Engineering, Beihang University, Beijing 100191, China
关键词:
凝聚核粒子计数器实验设计计数效率切割粒径经验公式温度流速交互影响
Keywords:
CPCDesign Expertcounting efficiencycut-off sizeempirical formulatemperatureflow velocityinteraction
分类号:
X851
DOI:
10.11991/yykj.201611010
文献标志码:
A
摘要:
计数效率是表明凝聚核粒子计数器(CPC)计数性能的重要指标,受计数器工作方式、工质种类、测试粒子物理化学特性、饱和器冷凝器温度以及冷凝器内流场等多重因素的影响。为明确多重因素对计数效率的影响关系,并确定切割粒径的预测模型,以氯化钠细颗粒物为粒子源,采用响应曲面实验设计方法设计实验工况点研究自主研发的正丁醇基凝聚核粒子计数器特性关系。研究结果表明:冷凝器温度变化对切割粒径的影响明显高于饱和器温度变化对切割粒径的影响,采样器流速和冷凝器内流速对切割粒径的作用不明显;采样器流速与冷凝器流速对切割粒径的交互影响显著,且采样器流速、冷凝器流速之间存在流速差使计数效率最优;研究得到凝聚核粒子计数器切割粒径预测公式,且公式能较好地利用各参数描述切割粒径。
Abstract:
Counting efficiency is an important performance indicator of condensation particle counter (CPC), witch is influenced by several factors such as the working mode, working fluid, physical and chemical properties of the particle to be tested, temperature of condenser and saturator and the flow field of condenser. In order to find the influence of multiple factors on counting efficiency and explicit prediction model, the paper engaged sodium chloride particle as particle source to investigate the butanol based condensation particle counter developed by the team. The experiment conditions were determined engaging the method of response surface in the Design Expert. The results show that the influence of condenser temperature variation on efficiency is more significant than that of saturator temperature, and the flow velocity of condenser and sample tube have less influence on counting efficiency, while they have obvious interactive influence on the cut-off particle size, besides, there is an optimal velocity difference between condenser and sample tube velocity, under which the counter can reach the highest counting efficiency. The empirical formula for predicting the cut-off size of condensation particle counter can be derived and used to predict the cut-off size and describe the relationship between these factors and the counting efficiency.

参考文献/References:

[1] WANG Xiaoliang, GROSE M A, AVENIDO A, et al. Improvement of engine exhaust particle sizer (EEPS) size distribution measurement-I. Algorithm and applications to compact-shape particles[J]. Journal of aerosol science, 2016, 92:95-108.
[2] SIPILÄ M, LEHTIPALO K, ATTOUI M, et al. Laboratory verification of PH-CPC’s ability to monitor atmospheric sub-3 nm clusters[J]. Aerosol science and technology, 2009, 43(2):126-135.
[3] SIPILÄ M, LEHTIPALO K, KULMALA M, et al. Applicability of condensation particle counters to measure atmospheric clusters[J]. Atmospheric chemistry and physics, 2008, 8(14):4049-4060.
[4] ZERVAS E, DORLHÈNE P, FORTI L, et al. Interlaboratory study of the exhaust gas particle number measurement using the condensation particle counter (CPC)[J]. Energy & fuels, 2006, 20(6):2426-2431.
[5] GIECHASKIEL B, DILARA P, ANDERSSON J. Particle measurement programme (PMP) light-duty inter-laboratory exercise:repeatability and reproducibility of the particle number method[J]. Aerosol science and technology, 2008, 42(7):528-543.
[6] HERING S V, SPIELMAN S R, LEWIS G S. Moderated, water-based, condensational particle growth in a laminar flow[J]. Aerosol science & technology, 2014, 48(4):401-408.
[7] HERING S V, STOLZENBURG M R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow[J]. Aerosol science and technology, 2005, 39(5):428-436.
[8] KULMALA M, MORDAS G, PETÄJÄ T, et al. The condensation particle counter battery (CPCB):a new tool to investigate the activation properties of nanoparticles[J]. Journal of aerosol science, 2007, 38(3):289-304.
[9] MORDAS G, MANNINEN H E, PETÄJÄ T, et al. On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007)[J]. Aerosol science and technology, 2008, 42(2):152-158.
[10] STRATMANN F, HERRMANN E, PETÄJÄ T, et al. Modelling Ag-particle activation and growth in a TSI WCPC model 3785[J]. Atmospheric measurement techniques discussions, 2009, 2(5):2217-2239.
[11] PETÄJÄ T, MORDAS G, MANNINEN H, et al. Detection efficiency of a water-based TSI condensation particle counter 3785[J]. Aerosol science and technology, 2006, 40(12):1090-1097.
[12] KIM S, ⅡDA K, KUROMIYA Y, et al. Effect of nucleation temperature on detecting molecular ions and charged nanoparticles with a diethylene glycol-based particle size magnifier[J]. Aerosol science and technology, 2014, 49(1):35-44.
[13] MORDAS G, SIPILÄ M, KULMALA M. Nanometer particle detection by the condensation particle counter UF-02proto[J]. Aerosol science and technology, 2008, 42(7):521-527.
[14] BALTZER S, ONEL S, WEISS M, et al. Counting efficiency measurements for a new condensation particle counter[J]. Journal of aerosol science, 2014, 70:11-14.
[15] WEHNER B, SIEBERT H, HERMANN M, et al. Characterisation of a new Fast CPC and its application for atmospheric particle measurements[J]. Atmospheric measurement techniques, 2011, 4(5):823-833.
[16] STOLZENBURG M R, MCMURRY P H. An ultrafine aerosol condensation nucleus counter[J]. Aerosol science and technology, 1991, 14(1):48-65.
[17] HINDS W C. Aerosol technology:properties, behavior, and measurement of airborne particles[M]. New York:Wiley, 1999.
[18] 林振毅. 凝结核计数器的原理和研究进展[J]. 中国科技信息, 2008(6):265-267, 269.
[19] KANGASLUOMA J, AHONEN L, ATTOUI M, et al. Sub-3 nm particle detection with commercial TSI 3772 and airmodus A20 fine condensation particle counters[J]. Aerosol science and technology, 2015, 49(8):674-681.

备注/Memo

备注/Memo:
收稿日期:2016-11-14。
作者简介:陈龙飞(1982-),男,副教授,博士.
通讯作者:马越岗,E-mail:1120896234@qq.com.
更新日期/Last Update: 2017-11-30