[1]谢洪乐,朱齐丹,刘鹏.基于极大似然估计的全景立体视觉机器人自定位方法[J].应用科技,2017,(05):40-45,51.[doi:10.11991/yykj.201704001]
 XIE Hongle,ZHU Qidan,LIU Peng.Self-localization of a robot with omnidirectional stereoscopic vision based on maximum likelihood estimation algorithm[J].yykj,2017,(05):40-45,51.[doi:10.11991/yykj.201704001]
点击复制

基于极大似然估计的全景立体视觉机器人自定位方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
期数:
2017年05期
页码:
40-45,51
栏目:
自动化技术
出版日期:
2017-10-05

文章信息/Info

Title:
Self-localization of a robot with omnidirectional stereoscopic vision based on maximum likelihood estimation algorithm
作者:
谢洪乐 朱齐丹 刘鹏
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
Author(s):
XIE Hongle ZHU Qidan LIU Peng
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
全景立体视觉移动机器人极大似然估计自定位视觉测量特征匹配人工路标三边定位
Keywords:
omnidirectional stereoscopic visionmobile robotmaximum likelihood estimationself-localizationvision measurementfeature matchingartificial landmarktrilateration localization
分类号:
TP242.6
DOI:
10.11991/yykj.201704001
文献标志码:
A
摘要:
针对室内环境下移动机器人的自主定位问题,研究了一种基于极大似然估计算法的全景立体视觉机器人自主定位方法。通过分析双曲面折反射式全景成像系统原理,利用全景视觉具有探测范围广、能够获取环境信息丰富的特点,提出了一种同向垂直基线的全景立体深度信息测量算法。在三边定位算法的基础上推广,提出了基于多路标的极大似然定位算法,采用最小二乘估计法,计算机器人定位的几何超定方程组,设计了完备的定位算法,实现机器人的绝对坐标解算。该方法能够应用于大范围环境的全局定位,实验结果验证了该算法的可靠性和准确性。
Abstract:
In order to solve the self-localization of mobile robot in indoor environment, a self-localization method based on the maximum likelihood estimation localization algorithm and used for omnidirectional stereo vision robot was proposed. By analyzing the imaging principle of hyperbolic catadioptric omnidirectional vision system, a method of measuring the panoramic three-dimensional depth information adopting vertical baseline with the same direction was proposed. The omnidirectional vision has the characteristics of wide detection range and rich environmental information. On the basis of the trilateration localization algorithm, a maximum likelihood localization algorithm based on multiple landmarks was proposed, the least squares estimation method was used to calculate the geometric overdetermined equations and a complete positioning algorithm was designed to realize the absolute coordinates solution on the robot. The method can be applied to global localization in a wide range of environments, and experimental results verified the reliability and accuracy of the proposed algorithm.

参考文献/References:

[1] LAN Gongwen, WANG Jianchun, CHEN Weidong. An improved indoor localization system for mobile robots based on landmarks on the ceiling[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics.Qingdao:IEEE, 2016:1395-1400.
[2] MARTÍNEZ-BARBERÁH, HERRERO-PÉREZ D. Autonomous navigation of an automated guided vehicle in industrial environments[J]. Robotics and computer-integrated manufacturing, 2010, 26(4):296-311.
[3] BOCCADORO M, MARTINELLI F, PAGNOTTELLI S.Constrained and quantized Kalman filtering for an RFID robot localization problem[J]. Autonomous robots, 2010, 29(3/4):235-251.
[4] ZHOU Bo, DAI Xianzhong, HAN Jianda. Real-time 3D outdoor environment modeling for mobile robot with a laser scanner[J]. Robot, 2012, 34(3):321-328.
[5] VINCENT R, LIMKETKAI B, ERIKSEN M. Comparison of indoor robot localization techniques in the absence of GPS[C]//Proceedings of the SPIE 7664, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV.Orlando, Florida, USA, 2010, 7664:76641Z.
[6] BENJAMIN B, ERINC G, CARPIN S. Real-time WiFilocalization of heterogeneous robot teams using an online random forest[J]. Autonomous robots, 2015, 39(2):155-167.
[7] 高云峰, 周伦, 吕明睿, 等. 自主移动机器人室内定位方法研究综述[J]. 传感器与微系统, 2013, 32(12):1-5, 9.
[8] LI Maohai, HONG Bingrong, CAI Zesu, et al. Novel indoor mobile robot navigation using monocular vision[J]. Engineering applications of artificial intelligence, 2012, 21(3):485-497.
[9] GOTO S, YAMASHITA A,KAWANISHI R,et al. 3D environment measurement using binocular stereo and motion stereo by mobile robot with omnidirectional stereo camera[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Barcelona,Spain,2011:296-303.
[10] VALIENTE D, GIL A, FERNÁNDEZ L,et al. A comparison of EKF and SGDapplied to a view-based SLAM approach with omnidirectional images[J]. Robotics and autonomous systems, 2014, 62(2):108-119.
[11] BESSA J A, BARROSO D A, DA ROCHA NETO A R, et al. Global location of mobile robots using artificial neural networks in omnidirectional images[J]. IEEE Latin America transactions, 2015, 13(10):3405-3414.
[12] 钟丽鸿, 胡成全, 金京姬. 基于RSSI极大似然估计定位算法的分析与实现[J]. 吉林大学学报:理学版, 2014, 52(3):556-560.
[13] 卢先领, 夏文瑞. 基于最大似然估计的加权质心定位算法[J]. 信息与控制, 2016, 45(5):582-587.
[14] CHEN Suisheng, LU Jiangang, LOU Xiaochun. Localization algorithm for wireless sensor networks based on MDS-MAP and nonlinear filtering[J]. Journal of Zhejiang university:engineering science, 2012, 46(5):866-872.
[15] ZHU Qidan, LIU Chuanjia, CAI Chengtao. A novel robot visual homing method based on SIFT features[J]. Sensors, 2015, 15(10):26063-26084.

相似文献/References:

[1]夏炎,隋岩.PRM路径规划算法优化研究[J].应用科技,2010,(10):1.[doi:10.3969/j.issn.1009-671X.2010.10.001]
 XIA Yan,SUI Yan.Research on optimization of PRM path planning algorithm[J].yykj,2010,(05):1.[doi:10.3969/j.issn.1009-671X.2010.10.001]
[2]赵百轶,张利军,贾鹤鸣.基于四叉树和改进蚁群算法的全局路径规划[J].应用科技,2011,(10):23.[doi:10.3969/j.issn.1009-671X.2011.10.06]
 ZHAO Baiyi,ZHANG Lijun,JIA Heming.Global path planning based on quadtree and improved ant colony optimization algorithm[J].yykj,2011,(05):23.[doi:10.3969/j.issn.1009-671X.2011.10.06]
[3]温素芳,朱齐丹,张小仿.基于模糊控制器的移动机器人路径规划仿真[J].应用科技,2005,(04):31.
[4]宋长会,赵国良,李 涛,等.基于LPC2106的自主式移动机器人设计[J].应用科技,2006,(02):28.
 SONG Chang-hui,ZHAO Guo-liang,LI Tao,et al.The design of autonomousmobile robot based on LPC2106[J].yykj,2006,(05):28.

备注/Memo

备注/Memo:
收稿日期:2017-04-02。
基金项目:国家自然科学基金项目(61175089,61203255);国家级大学生创新计划项目(GK2050002063513).
作者简介:谢洪乐(1996-),男,本科;朱齐丹(1963-),男,教授,博士生导师,博士.
通讯作者:谢洪乐,E-mail:xhle@hrbeu.edu.cn.
更新日期/Last Update: 2017-11-30