[1]徐辉,匡波,刘鹏飞,等.超蒸发表面结构应用于ERVC增强的初步实验研究[J].应用科技,2019,46(03):110-115.[doi:10.11991/yykj.201704003]
 XU Hui,KUANG Bo,LIU Pengfei,et al.A preliminary experimental study on the feasibility of ERVC enhancement applying hypervapotron technique[J].Applied science and technology,2019,46(03):110-115.[doi:10.11991/yykj.201704003]
点击复制

超蒸发表面结构应用于ERVC增强的初步实验研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年03期
页码:
110-115
栏目:
核科学技术与应用
出版日期:
2019-04-29

文章信息/Info

Title:
A preliminary experimental study on the feasibility of ERVC enhancement applying hypervapotron technique
作者:
徐辉 匡波 刘鹏飞 唐琪 王凡
上海交通大学 核科学与工程学院, 上海 200240
Author(s):
XU Hui KUANG Bo LIU Pengfei TANG Qi WANG Fan
School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
关键词:
IVR-ERVC开槽面超蒸发效应沸腾换热临界热通量严重事故RPV缓解措施
Keywords:
IVR-ERVCgrooved surfacehypervapotron effectboiling heat transfercritical heat fluxsevere accidentRPVmitigation measures
分类号:
TL333
DOI:
10.11991/yykj.201704003
文献标志码:
A
摘要:
为解决大型先进反应堆下封头高热负荷的挑战,通过堆内熔融物滞留(IVR)的严重事故缓解措施,向堆腔注水,实施压力容器外部冷却(ERVC),使下封头(RPV)的热负荷分布不超过临界热通量(CHF)。通过在模拟ERVC条件的自然循环回路上,开展光滑面和开槽面在朝下倾斜表面方位角为7.5°、37.5°、67.5°和82.5°的沸腾传热与CHF的对比实验,发现在ERVC的低流速过冷沸腾条件下,由于超蒸发效应,开槽面上沸腾换热显著增强,CHF得到明显提高,从而初步验证了其应用于增强ERVC热负荷有效性的可行性。
Abstract:
In order to solve the challenge of high heat load on the lower head of large-scale advanced reactor, measures are taken against serious accident mitigation of the melt in-vessel retention (IVR), by injecting water into the reactor cavity to apply the external reactor vessel cooling (ERVC), so that the heat load distribution of the lower head (RPV) does not exceed the critical heat flux (CHF). A campaign of comparative boiling heat transfer and CHF experiments on both downward-facing grooved and smooth surfaces with azimuth angles of 7.5°, 37.5°, 67.5° and 82.5° were carried out, which is conducted on a natural circulation loop simulating ERVC condition. It is demonstrated and revealed that, under the low flow rate subcooled boiling condition, that boiling heat transfer as well as CHF on the grooved surface is obviously enhanced due to the hypervapotron effect. And thus is the feasibility of improving the ERVC thermal load effectiveness applying hypervapotron structure surface preliminarily verified.

参考文献/References:

[1] THEOFANOUS T G, LIU C, ADDITON S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear engineering and design, 1997, 169(1/2/3):1-48.
[2] LEE D W, BAE Y D, KIM S K, et al. Experiment and analysis of hypervapotron mock-ups for preparing the 2nd qualification of the ITER blanket first wall[J]. Fusion engineering and design, 2010, 85(10/11/12):2155-2159.
[3] ESCOURBIAC F, SCHLOSSER J, MEROLA M, et al. Experimental optimisation of a hypervapotron? concept for ITER plasma facing components[J]. Fusion engineering and design, 2003, 66-68:301-304.
[4] LE FRAN J D, BRUCHNER H, DOMENJOUD P, et al. Improvements made to the thermal transfer of fuel elements by using the Vapotron Process[C]//Paper A/CONF 28/p/96 presented at 3nd International Conference on Peaceful Uses of Atomic Energy. Geneva, Switzerland, 1964.
[5] CHEN Peipei, NEWELL T A, JONES B G. Heat transfer characteristics in subcooled flow boiling with hypervapotron[J]. Annals of nuclear energy, 2008, 35(6):1159-1166.
[6] REMPE J L, KNUDSON D L, CONDIE K g, et al. Corium retention for high power reactors by an in-vessel core catcher in combination with external reactor vessel cooling[J]. Nuclear engineering and design, 2004, 230(1/2/3):293-309.
[7] THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head[J]. Nuclear engineering and design, 1997, 169(1/2/3):59-76.
[8] BAXI C B, FALTER H. A model for analytical performance prediction of hypervapotron[C]//International Topical Meeting on Reactor Thermal Hydraulics:Towards the Next Generation of Nuclear Power Plants. Salt Lake City, Utah, USA, 1992:207-210.
[9] PASCAL-RIBOT S, SAROLI A F, GRANDOTTO M, et al. 3D numerical simulations of hypervapotron cooling concept[J]. Fusion engineering and design, 2007, 82(15/16/17/18/19/20/21/22/23/24):1781-1785.
[10] YING A, WAKU T, YOUCHISON D L, et al. A subcooled boiling heat transfer predictive model for ITER EHF FW designs[J]. Fusion engineering and design, 2011, 86(6/7/8):667-670.
[11] CATTADORI G, GASPARI G P, CELATA G P, et al. Hypervapotron technique in subcooled flow boiling CHF[J]. Experimental thermal and fluid science, 1993, 7(3):230-240.

备注/Memo

备注/Memo:
收稿日期:2017-04-07。
基金项目:国家科技计划项目(2011ZX06002-004)
作者简介:徐辉,男,硕士研究生;匡波,男,副教授,博士
通讯作者:匡波,E-mail:bokuang@sjtu.edu.cn
更新日期/Last Update: 2019-04-29