[1]赵慧建,郭庆勇,陈磊,等.胶层厚度对CFRP-混凝土界面性能影响的数值分析[J].应用科技,2018,45(02):96-100.[doi:10.11991/yykj.201704006]
 ZHAO Huijian,GUO Qingyong,CHEN Lei,et al.Numerical analysis for influence of adhesive thickness on the interfacial properties of CFRP-concrete[J].yykj,2018,45(02):96-100.[doi:10.11991/yykj.201704006]
点击复制

胶层厚度对CFRP-混凝土界面性能影响的数值分析(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年02期
页码:
96-100
栏目:
建筑工程
出版日期:
2018-03-15

文章信息/Info

Title:
Numerical analysis for influence of adhesive thickness on the interfacial properties of CFRP-concrete
作者:
赵慧建 郭庆勇 陈磊 毛继泽
哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Huijian GUO Qingyong CHEN Lei MAO Jize
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
FRP-混凝土界面性能本构模型数值模拟胶层厚度有效粘结长度极限承载力
Keywords:
FRP-concreteinterface propertyconstitutive modelnumerical simulationadhesive thicknesseffective bonding lengthultimate bearing capacity
分类号:
TU398.9
DOI:
10.11991/yykj.201704006
文献标志码:
A
摘要:
纤维增强复合材料(FRP)-混凝土界面性能是分析FRP加固混凝土结构的受力状态的基础。其中,胶层厚度是影响界面本构关系的关键因素,需要深入而有效的研究。通过运用有限元程序,针对界面本构模型的差异性进行了分析,研究了胶层厚度对FRP-混凝土界面性能的影响,得到了胶层厚度对FRP-混凝土界面极限承载力、界面本构模型3个重要参数和有效粘结长度的影响规律。结果表明,界面极限承载力随着胶层厚度的增加先增后降,在胶层厚度为2 mm时达到最大,界面的剪切刚度和最大剪应力随着胶层厚度的增加而降低,有效粘结长度和界面破坏能则随之增大。
Abstract:
The interface performance of fiber-reinforced plastic(FRP)-concrete is the basis of analyzing on force behaviors of FRP-reinforced concrete structures, in addition, the adhesive thickness is a key factor affecting the constitutive relation of interface and needs a further study. In the paper, the finite element program was performed to analyze the differences of constitutive models on interface and study the effect of adhesive thickness on the interfacial properties of FRP-concrete, the laws of the influence caused by adhesive thickness to ultimate bearing capacity, three important parameters of constitutive model of FRP-concrete interface and the effective bonding length were obtained. It was found that, with the increase of adhesive thickness, the ultimate bearing capacity firstly increases and then decreases, when the adhesive thickness is 2 mm, the ultimate capacity reaches the maximum value; with the increase of adhesive thickness, the shear stiffness and the maximum shear stress of interface decrease, while the interfacial fracture energy and the effective bonding length increase.

参考文献/References:

[1] 郭樟根, 孙伟民, 闵珍. FRP与混凝土界面粘结性能的试验研究[J]. 南京工业大学学报, 2006, 28(6):37-42.
[2] NEUBAUER U, ROSTASY F S. Bond failure of concrete fiber reinforced polymer plates at inclined cracks——experiments and fracture mechanics model[C]//Proceedings of the 5th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures. Baltimore, American Concrete Institute, 1999.
[3] NAKABA K, KANAKUBO T, FURUTA T, et al. Bond behavior between fiber-reinforced polymer laminates and concrete[J]. ACI structural journal, 2001, 98(3):359-367.
[4] SAVOIA M, FERRACUTI B, MAZZOTTI C. Non linear bond-slip law for FRP-concrete interface[C]//Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures. Singapore:World Scientific, 2003:163-172.
[5] MONTI G, RENZELLI M, LUCIANI P. FRP adhesion in uncracked and cracked concrete zones[C]//Proceedings of the Sixth International Symposium on FRP Reinforcement for Concrete Structures. Singapore:World Scientific, 2003:183-192.
[6] DAI J G, UEDA T. Local bond stress slip relations for FRP sheets-concrete interfaces[M]//Tan K H. Fibre-Reinforced Polymer Reinforcement for Concrete Structures. Singapore:World Scientific, 2003:143-152.
[7] DAI J G. A nonlinear bond stress-slip relationship for FRP sheet-concrete interface[C]//Proc of international symposium on latest achievement of technology and research on retrofitting concrete structures. Kyoto, Japan:2003.
[8] 冯鹏, 陆新征, 叶列平. 纤维增强复合材料建设工程应用技术[M]. 北京:中国建筑工业出版社, 2011.
[9] International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures. International symposium on latest achievement of technology and research on retrofitting concrete structures:Proceedings and technical report on JCI technical committee[M]. Kyoto:Japan Concrete Institute, 2003.
[10] NEUBAUER U, ROSTASY F S. Design aspects of concrete structures strengthened with externally bonded CFRP-plates[C]//Proceedings of the 7th International Conference on Structural Faults and Repair. Edinburgh:Engineering Technics Press, 1997.
[11] KHALIFA A, GOLD W J, NANNI A, et al. Contribution of externally bonded FRP to shear capacity of RC flexural members[J]. Journal of composites for construction, 1998, 2(4):195-202.
[12] CHEN Jianfei, TENG J G. Anchorage strength models for frp and steel plates bonded to concrete[J]. Journal of structural engineering, 2001, 127(7):784-791.
[13] TAMURA, H, TAMON U, HITOSHI F. Effect of adhesive thickness on bond behaviour of carbon fiber sheet under static and fatigue loading[C]//Proceedings of the Second Official International Conference of International Institute for FRP in Construction for Asia-Pacific Region. Seoul:Korea, 2009:241-246.
[14] XU X X, CROCOMBE A D, SMITH P A. Fatigue crack growth rates in adhesive joints tested at different frequencies[J]. Journal of adhesion, 1996, 58(3-4):191-204.
[15] MAZUMDAR S K, MALLICK P K. Static and fatigue behavior of adhesive joints in SMC-SMC composites[J]. Polymer composites, 1998, 19(2):139-146.
[16] 彭晖, 高勇, 谢超, 等. FRP-混凝土界面粘结行为的参数影响研究[J]. 实验力学, 2014, 29(4):489-498.
[17] 郭诗惠, 张建仁, 高勇, 等. 胶层厚度对CFRP板材与混凝土界面黏结性能影响[J]. 公路交通科技, 2015, 32(9):87-91, 97.
[18] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International journal of solids and structures, 1989, 25(3):299-326.
[19] LEE J J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[20] SIMULIA D C S. ABAQUS 6.11 analysis user’s manual[M]. ABAQUS Inc, 2011.
[21] TÄLJSTEN B. Plate bonding:strengthening of existing concrete structures by epoxy bonded steel plates of steel or fiber reinforced plastics[D]. Sweden:Lulea University of Technology, 1994.

备注/Memo

备注/Memo:
收稿日期:2017-04-11。
基金项目:黑龙江省自然科学基金项目(E201415),黑龙江省教育厅科学技术研究项目(12543026)
作者简介:赵慧建(1993-),男,硕士研究生;郭庆勇(1978-),男,讲师,博士
通讯作者:郭庆勇,E-mail:guoqingyong@hrbeu.edu.cn
更新日期/Last Update: 2018-04-09