[1]李颖,银建中.含离子液体超临界CO2微乳液的分子模拟[J].应用科技,2018,45(03):87-91.[doi:10.11991/yykj.201705017]
 LI Ying,YIN Jianzhong.Molecular dynamics simulation of supercritical CO2 microemulsion with ionic-liquid domains[J].yykj,2018,45(03):87-91.[doi:10.11991/yykj.201705017]
点击复制

含离子液体超临界CO2微乳液的分子模拟(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年03期
页码:
87-91
栏目:
材料与化学
出版日期:
2018-05-05

文章信息/Info

Title:
Molecular dynamics simulation of supercritical CO2 microemulsion with ionic-liquid domains
作者:
李颖 银建中
大连理工大学 化工机械学院, 辽宁 大连 116024
Author(s):
LI Ying YIN Jianzhong
School of Chemical Machinery, Dalian University of Technology, Dalian 116024, China
关键词:
超临界CO2离子液体碳氢表面活性剂微乳液分子动力学模拟水力学半径聚团结构溶水量
Keywords:
supercritical CO2ionic liquidshydrocarbon surfactantmicroemulsionsmolecular dynamics simulationhydraulic radiusagglomeration microstructureswater solubility
分类号:
O642.5
DOI:
10.11991/yykj.201705017
文献标志码:
A
摘要:
微乳液的性质与组成和结构密切相关,需要深入认识其聚集体的微观结构。对 [bmim][PF6]、[bmim][BF4]、[bmim][Ac]这3种离子液体分别构建的Ls-36型超临界CO2微乳液体系进行了分子动力学模拟研究,结果表明均可以形成稳定的微乳液,且微乳液结构类似。Ls-36尾链在CO2中的伸展角度受离子液体阴离子结构的影响而有显著不同,[bmim][Ac]体系Ls-36尾链更靠近聚团外表面法线方向,相对于聚团外表面法线夹角范围为30°~70°,微乳液半径值也最大,为3.12 nm。[bmim][PF6]体系Ls-36尾链相对于法线夹角范围为78°~125°,微乳液半径为2.88 nm。[bmim][BF4]体系Ls-36尾链更贴近聚团一侧伸展,相对于法线夹角范围为107°~150°,微乳液半径值最小,为2.75 nm。相同表面活性剂浓度、含水量、温度及压力条件下,[bmim][Ac]体系聚乳速度最快、体系更稳定,同时对极性水分子的捕获能力最强,可达93.75%。
Abstract:
As a kind of green solvent, supercritical CO2 microemulsion is the polar microaggregate formed in nonpolar continual phase and it widens the application scope of supercritical CO2. The properties of microemulsion are closely related to its constituents and structure, it is necessary to further study the microstructure of its aggregate. The paper carried out a molecular dynamics simulation research for the Ls-36 supercritical CO2 microemulsion systems respectively formed by three kinds of ionic liquids including[bmim] [PF6],[bmim] [BF4] and[bmim] [Ac], the results show that all these three kinds of ionic liquids can form stable microemulsion and their microemulsion structures are similar. Due to the effect of anion structure of ionic liquid, there are apparent differences of the stretching angle of Ls-36 tail chains in CO2. For[bmim] [Ac] system, Ls-36 tail chain more approximates the normal direction of the outer surface of agglomerate, the scope of the included angle formed with the normal direction of the outer surface of agglomerate is 30°~70°, the radius of microemulsion is also the largest and it is 3.12 nm; for[bmim] [PF6] system, the scope of the included angle formed between Ls-36 tail chain and the normal direction is 78°~125°, the radius of microemulsion is 2.88 nm; for[bmim] [BF4] system, Ls-36 tail chain stretches more approximate to the side of agglomerate, the scope of the included angle formed with the normal direction is 107°~150°, the radius of microemulsion is the smallest and it is 2.75nm. Under the conditions of same concentration of surfactant, water content, temperature and pressure, the emulsion agglomeration speed of[bmim] [Ac] system is the fastest and the system is more stable. In addition, the ability of capturing polar water molecule is the most powerful and can reach 93.75%.

参考文献/References:

[1] LIANG Xiangdong, LIU Yifan, ZHOU Dan, et al. Critical microemulsion concentration and molar ratio of water-to-surfactant of supercritical CO2 microemulsions with commercial nonionic surfactants:experiment and molecular dynamics simulation[J]. Journal of chemical & engineering data, 2016, 61(9):3135-3143.
[2] ZHOU Dan, YU Wen, YIN Jianzhong. Selective solubilization of propane-1, 3-diol from dilute aqueous solution using supercritical CO2 microemulsion[J]. Journal of chemical & engineering data, 2012, 57(6):1787-1793.
[3] LIU Juncheng, HAN Buxing, WANG Zhengwu, et al. Solubility of Ls-36 and Ls-45 surfactants in supercritical CO2 and loading water in the CO2/water/surfactant systems[J]. Langmuir, 2002, 18(8):3086-3089.
[4] 韩布兴. 超临界流体科学与技术[M]. 北京:中国石化出版社, 2005.
[5] DONG Xing, ERKEY C. Hydroformylation of olefins in water-in-carbon dioxide microemulsions[M]//GOPALAN A S, WAI C M, JACOBS H K. Supercritical Carbon Dioxide:Separations and Processes. Washington, USA:American Chemical Society, 2003:430-443.
[6] 周丹, 喻文, 徐琴琴, 等. 超临界二氧化碳微乳液增溶多元醇特性[J]. 物理化学学报, 2011, 27(6):1300-1304.
[7] DONG X, POTTER D, ERKEY C. Synthesis of CuS nanoparticles in water-in-carbon dioxide microemulsions[J]. Industrial & engineering chemistry research, 2002, 41(18):4489-4493.
[8] 张锁江, 徐春明, 吕兴梅, 等. 离子液体与绿色化学[M]. 北京:科学出版社, 2009:97.
[9] ZHAO Yueju, ZHANG Jianling, HAN Buxing, et al. Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system[J]. Angewandte chemie, 2011, 50(3):636-639.
[10] PENG Li, ZHANG Jianling, LI Jianshen, et al. Macro-and mesoporous polymers synthesized by a CO2-in-ionic liquid emulsion-templating route[J]. Angewandte chemie, 2013, 52(6):1792-1795.
[11] REN Hongrui, LIANG Xiangdong, ZHOU Dan, et al. Study on the phase behavior and molecular dynamics simulation of a supercritical carbon dioxide microemulsion containing ionic liquid[J]. Industrial & engineering chemistry research, 2017, 56(13):3733-3739.
[12] YU Wen, ZHOU Dan, YIN Jianzhong, et al. Phase behavior of supercritical CO2 microemulsions with surfactant Ls-36 and selective solubilization of Propane-1, 3-diol[J]. Journal of chemical & engineering data, 2013, 58(3):814-820.
[13] YU Wen, LIU Yifan, YIN Jianzhong. Separation of 1, 3-propanediol using supercritical CO2 microemulsion with non-ionic surfactant Ls-54:experiment and simulation[J]. Chemical engineering journal, 2015, 273:197-204.
[14] LIU Jiehua, CHENG Siqing, ZHANG Jianling, et al. Reverse micelles in carbon dioxide with ionic-liquid domains[J]. Angewandte chemie, 2007, 46(18):3313-3315.
[15] CHANDRAN A, PRAKASH K, SENAPATI S. Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study[J]. Chemical physics, 2010, 374(1/2/3):46-54.
[16] HARRIS J G, YUNG K H. Carbon Dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The journal of physical chemistry, 1995, 99(31):12021-12024.
[17] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials[J]. The journal of physical chemistry, 1987, 91(24):6269-6271.
[18] 李颖, 周丹, 徐琴琴, 等. 超临界二氧化碳微乳液系统的分子模拟研究进展[J]. 化工进展, 2017, 36(3):774-782.
[19] ITO A M, OKUMURA H, SAITO S, et al. Examination of temperature dependence of chemical sputtering on graphite by comparing the langevin and berendsen thermostats[J]. Plasma and fusion research, 2010, 5:S2020.

相似文献/References:

[1]周雪玲,银建中.二烷基咪唑离子液体的合成、纯化及表征[J].应用科技,2015,42(06):72.[doi:10.11991/yykj.201503014]
 ZHOU Xueling,YIN Jianzhong.Synthesis, purification and characterization of dialkyl imidazole ionic liquid[J].yykj,2015,42(03):72.[doi:10.11991/yykj.201503014]
[2]梁向东,银建中.实验与MD模拟探究基于LS-45的超临界CO2微乳液结构[J].应用科技,2017,44(04):70.[doi:10.11991/yykj.201605021]
 LIANG Xiangdong,YIN Jianzhong.Study on micro-structure of scCO2 microemulsion with LS-45by experiment and molecular dynamics simulation method[J].yykj,2017,44(03):70.[doi:10.11991/yykj.201605021]

备注/Memo

备注/Memo:
收稿日期:2017-05-25。
基金项目:国家自然科学基金面上项目(21376045, U1662130)
作者简介:李颖(1991-),女,硕士研究生;银建中(1964-),男,教授,博士生导师
通讯作者:银建中,E-mail:jzyin@dlut.edu.cn
更新日期/Last Update: 2018-06-14