[1]蔡佩,甄梦媛,刘一凡,等.[Bmim]BF4@SBA-15负载化离子液体制备及表征[J].应用科技,2018,45(06):86-91.[doi:10.11991/yykj.201706017]
 CAI Pei,ZHEN Mengyuan,LIU Yifan,et al.Preparation and characterization of [Bmim]BF4@SBA-15 supported ionic liquids[J].Applied science and technology,2018,45(06):86-91.[doi:10.11991/yykj.201706017]
点击复制

[Bmim]BF4@SBA-15负载化离子液体制备及表征(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年06期
页码:
86-91
栏目:
材料与化学
出版日期:
2018-11-05

文章信息/Info

Title:
Preparation and characterization of [Bmim]BF4@SBA-15 supported ionic liquids
作者:
蔡佩 甄梦媛 刘一凡 银建中
大连理工大学 化工机械与安全学院, 辽宁 大连 116024
Author(s):
CAI Pei ZHEN Mengyuan LIU Yifan YIN Jianzhong
School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
离子液体负载化SBA-15超临界流体CO2辅助法负载量共溶剂CO2吸附
Keywords:
ionic liquidsupportedSBA-15supercritical fluidCO2 assistant methodloadingcosolventCO2 adsorption
分类号:
TQ424
DOI:
10.11991/yykj.201706017
文献标志码:
A
摘要:
离子液体是吸收CO2的绿色溶剂,负载化离子液体能有效增加离子液体的界面积,减少离子液体用量,促进CO2的吸收。采用传统浸渍法和超临界CO2辅助法制备负载化离子液体,选用乙醇作为共溶剂,考察不同参数对负载量的影响。对制备载体进行CO2吸附性能评价,并比较不同的离子液体和负载化工艺条件对CO2吸附性能的影响。结果表明,CO2吸附量随离子液体负载量增加而增加,且负载量相同情况下,超临界CO2辅助法制备的负载化离子液体具有更大的比表面积和孔容,能促进CO2的吸收。
Abstract:
The ionic liquid is a kind of green solvent for absorbing CO2 and the supported ionic liquid can effectively increase the ionic liquid interface area, reduce the amount of ionic liquid and promote the absorption of CO2. Using traditional impregnation method and supercritical CO2 assisted method to prepare the supported ionic liquid, and choosing alcohol as the cosolvent to investigate the effect of different parameters on the loading. Evaluate the CO2 adsorption performance on the prepared carrier, and compare the effects of different ionic liquids and loading process conditions on CO2 adsorption. The results show that the amount of CO2 adsorbed increases with the increase of ionic liquid loading, and that under the same loading condition, the supported ionic liquids prepared by supercritical CO2 assisted method have higher specific surface area and pore volume, and can promote the absorption of CO2.

参考文献/References:

[1] JENKINSON D S, ADAMS D E, WILD A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351(6324):304-306.
[2] DURACCIO V, GNONI M G, ELIA V. Carbon capture and reuse in an industrial district:a technical and economic feasibility study[J]. Journal of CO2 utilization, 2015, 10:23-29.
[3] D’ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture:prospects for new materials[J]. Angewandte chemie international edition, 2010, 49(35):6058-6082.
[4] WELTON T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical reviews, 1999, 99(8):2071-2083.
[5] BRENNECKE J F, MAGINN E J. Ionic liquids:innovative fluids for chemical processing[J]. AIChE journal, 2001, 47(11):2384-2389.
[6] HO T D, CANESTRARO A J, ANDERSON J L. Ionic liquids in solid-phase microextraction:a review[J]. Analytica chimica acta, 2011, 695(1/2):18-43.
[7] WASSERSCHEID P, KEIM W. Ionic liquids-new "solutions" for transition metal catalysis[J]. Angewandte chemie international edition, 2000, 39(21):3772-3789.
[8] CADENA C, ANTHONY J L, SHAH J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. Journal of the American chemical society, 2004, 126(16):5300-5308.
[9] ANTHONY J L, ANDERSON J L, MAGINN E J, et al. Anion effects on gas solubility in ionic liquids[J]. The journal of physical chemistry B, 2005, 109(13):6366-6374.
[10] ANTHONY J L, MAGINN E J, BRENNECKE J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. The journal of physical chemistry B, 2002, 106(29):7315-7320.
[11] 银建中, 蔡佩, 周雪玲, 等. 浸渍法制备负载化离子液体吸附剂及其表征[J]. 环境工程, 2017, 35(5):77-81, 43.
[12] ZHANG Zhengmin, WU Linbo, DONG Jie, et al. Preparation and SO2 sorption/desorption behavior of an ionic liquid supported on porous silica particles[J]. Industrial & engineering chemistry research, 2009, 48(4):2142-2148.
[13] ZHAO Hua. Methods for stabilizing and activating enzymes in ionic liquids-a review[J]. Journal of chemical technology and biotechnology, 2010, 85(7):891-907.
[14] ZHU Lili, GUO Lin, ZHANG Zhenjiang, et al. The preparation of supported ionic liquids (SILs) and their application in rare metals separation[J]. Science China chemistry, 2012, 55(8):1479-1487.
[15] XU Qinqin, YIN Jianzhong, ZHOU Xueling, et al. Impregnation of ionic liquids in mesoporous silica using supercritical carbon dioxide and co-solvent[J]. RSC advances, 2016, 6(103):101079-101086.
[16] 李琪, 银建中. 超临界二氧化碳和离子液体微乳液体系的热力学性质及应用[J]. 应用科技, 2015, 42(1):70-74.
[17] 银建中, 任帅, 程绍杰, 等. CO2膨胀液体热力学特性与溶解度增强规律研究[J]. 应用科技, 2009, 36(6):1-7.
[18] 王伟彬, 银建中. 含CO2/离子液体系统相行为及其在反应与分离中的应用进展[J]. 化学进展, 2008, 20(4):441-449.
[19] 王伟彬, 银建中, 孙丽华, 等. CO2/离子液体体系热力学性质的分子动力学模拟[J]. 物理化学学报, 2009, 25(11):2291-2295.
[20] 银建中, 徐琴琴, 张传杰, 等. 超临界流体沉积法制备纳米Cu/SBA-15复合材料[J]. 复合材料学报, 2009, 26(2):25-29.
[21] 银建中, 张宪阵, 徐琴琴, 等. 超临界流体沉积技术在纳米复合材料制备中的应用[J]. 化学进展, 2009, 21(4):606-614.
[22] ZHAO Dongyuan, FENG Jianglin, HUO Qisheng, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279(5350):548-552.
[23] YIN Jianzhong, XU Qinqin, WANG Aiqin. Controlled growth of copper nanoparticles and nanorods in the channels of SBA-15 by supercritical fluid deposition[J]. Chemical engineering communications, 2009, 197(4):627-632.
[24] XU Qinqin, WANG Yaqiong, WANG Aiqin, et al. Systematical study of depositing nanoparticles and nanowires in mesoporous silica using supercritical carbon dioxide and co-solvents:morphology control, thermodynamics and kinetics of adsorption[J]. Nanotechnology, 2012, 23(28):1-8.
[25] XU Qinqin, ZHANG Chuanjie, ZHANG Xianzhen, et al. Controlled synthesis of Ag nanowires and nanoparticles in mesoporous silica using supercritical carbon dioxide and co-solvent[J]. The journal of supercritical fluids, 2012, 62:184-189.
[26] XU Qinqin, MA Yuling, XU Gang, et al. Synthesis of highly dispersed silver nanoparticles or nano-network modified KIT-6 using supercritical carbon dioxide[J]. Journal of materials science, 2015, 50(2):855-862.
[27] XU Qinqin, XU Gang, YIN Jianzhong, et al. Preparation of superhighly dispersed CO3O4@SBA-15 with different morphologies in supercritical CO2 with the assistance of dilute acids[J]. Industrial & engineering chemistry research, 2014, 53(25):10366-10371.

相似文献/References:

[1]周雪玲,银建中.二烷基咪唑离子液体的合成、纯化及表征[J].应用科技,2015,42(06):72.[doi:10.11991/yykj.201503014]
 ZHOU Xueling,YIN Jianzhong.Synthesis, purification and characterization of dialkyl imidazole ionic liquid[J].Applied science and technology,2015,42(06):72.[doi:10.11991/yykj.201503014]
[2]李颖,银建中.含离子液体超临界CO2微乳液的分子模拟[J].应用科技,2018,45(03):87.[doi:10.11991/yykj.201705017]
 LI Ying,YIN Jianzhong.Molecular dynamics simulation of supercritical CO2 microemulsion with ionic-liquid domains[J].Applied science and technology,2018,45(06):87.[doi:10.11991/yykj.201705017]

备注/Memo

备注/Memo:
收稿日期:2017-06-22。
基金项目:国家自然科学基金项目(21376045,21506027,U1662130)
作者简介:蔡佩(1992-),女,硕士研究生;银建中(1964-),男,教授,博士
通讯作者:银建中,E-mail:jzyin@dlut.edu.cn
更新日期/Last Update: 2018-11-02