[1]彭梦姣,尚华,杨建民.香豆素-苯并噻唑荧光探针的合成及性质研究[J].应用科技,2018,45(03):96-102.[doi:10.11991/yykj.201710010]
 PENG Mengjiao,SHANG Hua,YANG Jianmin.The synthesis and property research of coumarin-benzothiazole fluorescent sensor[J].Applied science and technology,2018,45(03):96-102.[doi:10.11991/yykj.201710010]
点击复制

香豆素-苯并噻唑荧光探针的合成及性质研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年03期
页码:
96-102
栏目:
材料与化学
出版日期:
2018-05-05

文章信息/Info

Title:
The synthesis and property research of coumarin-benzothiazole fluorescent sensor
作者:
彭梦姣 尚华 杨建民
陕西工业职业技术学院 化工与纺织服装学院, 陕西 咸阳 712000
Author(s):
PENG Mengjiao SHANG Hua YANG Jianmin
Department of Chemical Engineering and Textile, Shaanxi Polytechnic Institute, Xianyang 712000, China
关键词:
香豆素-苯并噻唑衍生物荧光探针检测Fe(III)猝灭型高选择性高灵敏度低成本
Keywords:
coumarin-benzothiazole derivativesfluorescent sensordetectioniron ionON-OFF typehigh selectivityhigh sensitivitylow cos
分类号:
O657.39
DOI:
10.11991/yykj.201710010
文献标志码:
A
摘要:
为了快速、便捷地检测铁离子,设计并合成了一种新型香豆素-苯并噻唑荧光探针(BC-1)并将其应用于Fe(Ⅲ)检测。探针BC-1以香豆素为荧光团并引入硫原子和氧原子作为识别基团以达到良好的检测效果。Fe(Ⅲ)与识别基团络合后,探针BC-1表现出猝灭型的检测效果,并能在短时间内对Fe(Ⅲ)表现出高选择性和高灵敏度地识别。另外探针BC-1合成路线简便、成本低、产率高,因此探针BC-1除了可以在自然水系、工业废水和生物体内很好的检测Fe(Ⅲ)外,还有很好的市场化前景、便于向大众推广。
Abstract:
In order to detect iron ion quickly and conveniently, a fluorescent sensor (BC-1) for iron ion bearing coumarin-benzothiazole derivative has been designed and synthesized by a novel way. Sulphur and oxygen heteroatoms were introduced as chelating site and ethyl-7-hydroxycoumarin-3-carboxylate group was introduced as fluorophore to achieve recognition. After complexing of iron ion and identification group, BC-1 which served as an ON-OFF type sensor displayed high selectivity and sensitivity for iron ion in a very short time. BC-1 was designed with ease of synthesis, low cost and low yield. Therefore, the sensor has potential in physiological and environmental applications, including connate water and industrial waste water, systems for iron ion detection.

参考文献/References:

[1] KANG Wenjing, PEI Xing, RUSINEK C A, et al. Determination of lead with a copper-based electrochemical sensor[J]. Analytical chemistry, 2017, 89(6):3345-3352.
[2] ZHANG Bibo, LIU Haiyang, WU Fengxu, et al. A dual-response quinoline-based fluorescent sensor for the detection of Copper (Ⅱ) and Iron(Ⅲ) ions in aqueous medium[J]. Sensors and actuators B:chemical, 2017, 243:765-774.
[3] NAMGUNG H, KIM J, GWON Y, et al. Synthesis of poly(p-phenylene) containing a rhodamine 6G derivative for the detection of Fe(Ⅲ) in organic and aqueous media[J]. RSC advances, 2017, 7(63):39852-39858.
[4] TANG Yongjuan, CUI Shiqiang, PU Shouzhi. A dual-channel sensor for Hg2+ based on a diarylethene with a rhodamine B unit[J]. Journal of fluorescence, 2016, 26(4):1421-1429.
[5] EPSZTEJN S, GLICKSTEIN H, PICARD V, et al. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties[J]. Blood, 1999, 94(10):3593-3603.
[6] HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango:regulation of mammalian iron metabolism[J]. Cell, 2010, 142(1):24-38.
[7] CHEN Weihua, XING Yu, PANG Yi. A highly selective pyrophosphate sensor based on ESIPT turn-on in water[J]. Organic letters, 2011, 13(6):1362-1365.
[8] ZHANG Ansheng, YANG Fan, MEYER K, et al. Neogenin-mediated hemojuvelin shedding occurs after hemojuvelin traffics to the plasma membrane[J]. Journal of biological chemistry, 2008, 283(25):17494-17502.
[9] KREBS C, HENSHAW T F, CHEEK J, et al. Conversion of 3Fe-4S to 4Fe-4S clusters in native pyruvate formate-lyase activating enzyme:mössbauer characterization and implications for mechanism[J]. Journal of the American chemical society, 2016, 122(50):12497-12506.
[10] BARNHAM K J, MASTERS C L, BUSH A I. Neurodegenerative diseases and oxidative stress[J]. Nature reviews drug discovery, 2004, 3(3):205-214.
[11] KELL D B. Iron behaving badly:inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases[J]. BMC medical genomics, 2009, 2:2.
[12] BRUGNARA C. Iron deficiency and erythropoiesis:new diagnostic approaches[J]. Clinical chemistry, 2003, 49(10):1573-1578.
[13] BEUTLER E, FELITTI V, GELBART T, et al. Genetics of iron storage and hemochromatosis[J]. Drug metabolism and disposition:the biological fate of chemicals, 2001, 29(4 Pt 2):495-499.
[14] CAIRO G, PIETRANGELO A. Iron regulatory proteins in pathobiology[J]. Biochemical journal, 2000, 352(Pt 2):241-250.
[15] PAPANIKOLAOU G, PANTOPOULOS K. Iron metabolism and toxicity[J]. Toxicology and applied pharmacology, 2005, 202(2):199-211.
[16] KALINOWSKI D S, RICHARDSON D R. The evolution of iron chelators for the treatment of iron overload disease and cancer[J]. Pharmacological reviews, 2005, 57(4):547-583.
[17] LI Zhanxian, ZHANG Lifeng, LI Xiaoya, et al. A fluorescent color/intensity changed chemosensor for Fe3+ by photo-induced electron transfer (PET) inhibition of fluoranthene derivative[J]. Dyes and pigments, 2012, 94(1):60-65.
[18] YANG Min, SUN Mingtai, ZHANG Zhongping, et al. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions[J]. Talanta, 2013, 105:34-39.
[19] MARENCO M J C, FOWLEY C, HYLAND B W, et al. A new use for an old molecule:N-phenyl-2-(2-hydroxynaphthalen-1-ylmethylene)hydrazinecarbothioamide as a ratiometric ‘Off-On’ fluorescent probe for iron[J]. Tetrahedron letters, 2012, 53(6):670-673.
[20] XU Meiyun, WU Shuizhu, ZENG Fang, et al. Cyclodextrin supramolecular complex as a water-soluble ratiometric sensor for ferric ion sensing[J]. Langmuir, 2010, 26(6):4529-4534.
[21] ZHOU Quanying, LIU Weizhou, CHANG Lin, et al. Spectral study of the interaction between 2-pyridinecarbaldehyde-p-phenyldihydrazone and ferric iron and its analytical application[J]. Spectrochimica acta part A:molecular and biomolecular spectroscopy, 2012, 92:78-83.
[22] HUANG Xiaobo, DONG Yu, HUANG Qianwen, et al. Hydrogen bond induced fluorescence recovery of coumarin-based sensor system[J]. Tetrahedron letters, 2013, 54(29):3822-3825.
[23] LI Guangyue, SONG Ping, HE Guozhong. TDDFT study on different sensing mechanisms of similar cyanide sensors based on Michael addition reaction[J]. Chinese journal of chemical physics, 2011, 24(3):305-310.
[24] KO K C, WU Jiasheng, KIM H J, et al. Rationally designed fluorescence ‘turn-on’ sensor for Cu2+[J]. Chemical communications, 2011, 47(11):3165-3167.
[25] RAZI S S, SRIVASTAVA P, ALI R, et al. A coumarin-derived useful scaffold exhibiting Cu2+ induced fluorescence quenching and fluoride sensing (On-Off-On) via copper displacement approach[J]. Sensors and actuators B:chemical, 2015, 209:162-171.
[26] PAL S, MUKHERJEE M, SEN B, et al. A new fluorogenic probe for the selective detection of carbon monoxide in aqueous medium based on Pd(0) mediated reaction[J]. Chemical communications, 2015, 51(21):4410-4413.
[27] SARKAR D, PRAMANIK A K, MONDAL T K. A novel coumarin based molecular switch for dual sensing of Zn(Ⅱ) and Cu(Ⅱ)[J]. RSC advances, 2015, 5(10):7647-7653.
[28] DUAN Yuwei, YANG Xiaofeng, ZHONG Yaogang, et al. A ratiometric fluorescent probe for gasotransmitter hydrogen sulfide based on a coumarin-benzopyrylium platform[J]. Analytica chimica acta, 2015, 859:59-65.
[29] ROUBINET B, CHEVALIER A, RENARD P Y, et al. A synthetic route to 3-(heteroaryl)-7-hydroxycoumarins designed for biosensing applications[J]. European journal of organic chemistry, 2015, 2015(1):166-182.
[30] CHEN Kangyu, GUO Yuan, LU Zhenhuan, et al. Novel coumarin-based fluorescent probe for selective detection of bisulfite anion in water[J]. Chinese journal of chemistry, 2010, 28(1):55-60.

相似文献/References:

[1]彭梦姣,尚华,杨建民,等.一种高水溶性的比率比色型氰根离子荧光探针[J].应用科技,2018,45(04):109.[doi:10.11991/yykj.201802002]
 PENG Mengjiao,SHANG Hua,YANG Jianmin,et al.A high water-soluble ratiometric and colorimetric fluorescent sensor for cyanide detection[J].Applied science and technology,2018,45(03):109.[doi:10.11991/yykj.201802002]

备注/Memo

备注/Memo:
收稿日期:2017-10-31。
基金项目:陕西省教育厅专项科研计划项目(16JK1058)
作者简介:彭梦姣(1988-),女,讲师,博士
通讯作者:彭梦姣,E-mail:dream_vivi@163.com
更新日期/Last Update: 2018-06-14