[1]芦树平,张东汗,张海鹏,等.全浸没螺旋桨吸气机理及水动力性能数值模拟[J].应用科技,2018,45(03):7-13.[doi:10.11991/yykj.201804003]
 LU Shuping,ZHANG Donghan,ZHANG Haipeng,et al.Numerical study of ventilation mechanism and hydrodynamic performance of a full submerged propeller[J].Applied science and technology,2018,45(03):7-13.[doi:10.11991/yykj.201804003]
点击复制

全浸没螺旋桨吸气机理及水动力性能数值模拟(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第45卷
期数:
2018年03期
页码:
7-13
栏目:
船舶与海洋工程
出版日期:
2018-05-05

文章信息/Info

Title:
Numerical study of ventilation mechanism and hydrodynamic performance of a full submerged propeller
作者:
芦树平1 张东汗2 张海鹏2 王旭2
1. 中国国际工程咨询有限公司, 北京 100048;
2. 哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001
Author(s):
LU Shuping1 ZHANG Donghan2 ZHANG Haipeng2 WANG Xu2
1. China International Engineering Consulting Corporation, Beijing 100048, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
螺旋桨数值模拟浸没深度吸气自由液面水平侧向力垂向力推力损失转矩损失
Keywords:
propellernumerical simulationsubmergence ratiosventilationfree surfacehorizontal side forcevertical forcethrust losstorque loss
分类号:
U661.1
DOI:
10.11991/yykj.201804003
文献标志码:
A
摘要:
为研究螺旋桨与自由液面的相互作用关系,基于RANS方法,采用滑移网格(SM)方法及流体体积函数(VOF)方法对全浸没螺旋桨的吸气现象进行数值模拟,详细分析了螺旋桨与自由液面的相互作用关系及吸气对螺旋桨的水动力性能的影响。结果表明,螺旋桨的推力、转矩等会受到浸没深度及进速系数的影响,产生推力损失及转矩损失;螺旋桨的吸气会引起自由液面的变形,这种不规则的、瞬时的变形情况使得螺旋桨的性能变得极其复杂;同时,由于自由液面的影响,桨叶的压力分布会呈现明显的不对称性,会产生除推力之外的水平侧向力及垂向力。
Abstract:
In order to study the interaction between propeller and free surface, in this paper, based on the Reynolds Average Navier-Stokes method, the ventilation phenomenon of the fully submerged propeller is numerically simulated using the sliding mesh (SM) method and the volume of fluid (VOF) method. The interaction between the propeller and the free surface and the influence of ventilation on the hydrodynamic performance of the propeller were analyzed in detail. The results show that the thrust and torque of the propeller are affected by the submergence ratios and the advance coefficient, resulting in thrust loss and torque loss; the suction of the propeller will cause irregular and transient deformation of the free surface, which makes the performance of the propeller extremely complex. At the same time, due to the influence of the free surface, the pressure distribution of the propeller blade will exhibit a significant asymmetry, horizontal lateral force and vertical force other than thrust will be generated.

参考文献/References:

[1] KOZLOWSKA A M, STEEN S, KOUSHAN K. Classification of different type of propeller ventilation and ventilation inception mechanism[J]. Anthropology news, 2014, 47(9):56-57.
[2] DAVID S, SEFIANE K, TADRIST L. Experimental investigation of the effect of the ambient gas on evaporating sessile drops[J]. Defect and diffusion Foru, 2009:461-468.
[3] FALTINSEN O M, MINSAAS K J, LIAPIS N, et al. Prediction of resistance and propulsion of a ship in a seaway[C]//Proceedings of 13th Symposium on Naval Hydrodynamics. Tokyo, Japan, 1981:505-529.
[4] MINSAAS K J, FALTINSEN O M, PERSSON B.. On the importance of added resistance, propeller immersion and propeller ventilation for large ships in a seaway[C]//Proceedings of International Symposium on Practical Design of Ships and other Floating Structures. Tokyo, Japan, 1983.
[5] MINSAAS K J, THON H J, KAUCZYNSKI W, et al. Estimation of required capacity for operation of offshore vessels under severe weather conditions[C]//Proceedings of International Symposium on Practical Design of Ships and Other Floating Structures. Trondheim, Norway, 1987.
[6] W Lianzhou, G Chunyu, W Lei, et al. Numerical analysis of propeller during heave motion near a free surface[J]. Marine technology society journal, 2017, 51(1):40-51.
[7] GUO C Y, ZHAO D G, SUN Y. Numerical simulation and experimental research on hydrodynamic performance of propeller with varying shaft depths[J]. China ocean eng, 28(2):271-282.
[8] H Shiba. Air-drawing of marine propellers[R]. Transportation Technical Research Institute, Tokyo:Unyu Gijutsu Kenkyujo, 1953.
[9] PENG H, QIU W, NI S. Effect of turbulence models on RANS computation of propeller vortex flow[J]. Ocean engineering, 2013, 72(4):304-317.
[10] HIRT C W, NICHOLS B D. Volume of fluid(VOF)method for the dynamics of free boundary[J]. Compute phys, 1981, 39:201-225.
[11] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ω eddy-viscosity model for high Reynolds number turbulent flows-model development and validation[J]. Computers fluids, 1995, 24(3):227-238.
[12] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8):1598-1605.
[13] ZHU Z. Numerical study on characteristic correlation between cavitating flow and skew of ship propellers[J]. Ocean engineering, 2015, 99:63-71.
[14] WANG L Z, GUO C Y, SU Y M, et al. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers[J]. International journal of naval architecture and ocean engineering, 2018, 10(2):212-224.

相似文献/References:

[1]曲行丽,阎昌琪,范广铭.微肋管单相对流强化换热数值模拟[J].应用科技,2009,36(04):65.
 QU Xing-Li,YAN Chang-Qi,FAN Guang-ming.Numerical simulation on singlephase flow and heat transfer in micro fin tubes[J].Applied science and technology,2009,36(03):65.
[2]银建中,程绍杰,贾凌云,等.搅拌式反应器内固-液两相悬浮特性的CFD模拟[J].应用科技,2009,36(11):11.[doi:10.3969/j.issn.1009-671X.2009.11.003]
 YIN Jian-Zhong,CHENG Shao-Jie,JIA Ling-Yun,et al.CFD simulation of solid-liquid suspension characteristics in stirred tank reactor[J].Applied science and technology,2009,36(03):11.[doi:10.3969/j.issn.1009-671X.2009.11.003]
[3]高柱,李卫明,陈和春,等.思林水电站土石围堰过水流场三维数值模拟[J].应用科技,2009,36(12):56.[doi:10.3969/j.issn.1009-671X.2009.12.015]
 GAO Zhu,LI Wei-ming,CHEN He-chun,et al.3D numerical simulation of overtopping flow field for earthrockfill cofferdam of Silin hydropower station[J].Applied science and technology,2009,36(03):56.[doi:10.3969/j.issn.1009-671X.2009.12.015]
[4]王仁华,张海黎,黄同高,等.扇翼飞行器绕翼型流动数值研究[J].应用科技,2011,38(12):5.[doi:1009- 671X(2011)12- 0005- 05]
 WANG Renhua,ZHANG Haili,HUANG Tonggao,et al.Numerical study of flow over fan-wing airfoil[J].Applied science and technology,2011,38(03):5.[doi:1009- 671X(2011)12- 0005- 05]
[5]吴莹,李相峰,黄嘉,等.基于数值模拟的蠕虫床工艺参数优化[J].应用科技,2012,39(05):7.[doi:10.3969/j.issn.1009-671X.201203032]
 WU Ying,LI Xiangfeng,HUANG Jia,et al.Technological parameter optimization of worm-reactor based on the numerical simulation[J].Applied science and technology,2012,39(03):7.[doi:10.3969/j.issn.1009-671X.201203032]
[6]张希兴,李树春,王海泉,等.基于Anycasting铸造模拟技术的DA5排气歧管产品研制[J].应用科技,2013,40(01):8.[doi:10.3969/j.issn.1009-671X.201207002]
 ZHANG Xixing,LI Shuchun,WANG Haiquan,et al.The research on new product of exhaust manifold DA5 based on the Anycasting technology[J].Applied science and technology,2013,40(03):8.[doi:10.3969/j.issn.1009-671X.201207002]
[7]张顺利,郑洪涛,穆勇.EDC模型在三维燃烧流场数值模拟的应用[J].应用科技,2005,32(04):48.
[8]孙秀君,孙海鸥,姜任秋.油气分离器内油滴轨迹的数值模拟[J].应用科技,2006,33(10):69.
 SUN Xiu-jun,SUN Hai-ou,J IANG Ren-qiu.Numer ical simulation of locus of oil droplet in oil-air separator[J].Applied science and technology,2006,33(03):69.
[9]陆鹏,赵亚楠,张艳秋,等.镍钛形状记忆合金管滚珠热旋压成形数值模拟[J].应用科技,2013,40(04):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]
 LU Peng,ZHAO Yanan,ZHANG Yanqiu,et al.Numerical simulation of hot ball spinning of NiTi shape memory alloy tube[J].Applied science and technology,2013,40(03):73.[doi:10.3969/j.issn.1009-671X.2012.201302003]
[10]赵晓春,黄胜,王超,等.螺旋桨自身参数对空泡性能的影响分析[J].应用科技,2013,40(06):24.[doi:10.3969/j.issn.1009-671X.201212002]
 ZHAO Xiaochun,HUANG Sheng,WANG Chao,et al.Effect of parameters on its cavitation performance of a propeller[J].Applied science and technology,2013,40(03):24.[doi:10.3969/j.issn.1009-671X.201212002]

备注/Memo

备注/Memo:
收稿日期:2018-04-04。
基金项目:国家自然科学基金项目(51209048,41176074,51409063)
作者简介:卢树平(1985-),男,工程师;张海鹏(1981-),男,讲师,博士
通讯作者:张海鹏,E-mail:740068735@qq.com
更新日期/Last Update: 2018-06-14