[1]席志红,赵春梅.基于变分水平集理论的水下图像分割方法[J].应用科技,2019,46(02):53-58.[doi:10.11991/yykj.201807004]
 XI Zhihong,ZHAO Chunmei.An underwater image segmentation method based on the variational level set theory[J].Applied science and technology,2019,46(02):53-58.[doi:10.11991/yykj.201807004]
点击复制

基于变分水平集理论的水下图像分割方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年02期
页码:
53-58
栏目:
现代电子技术
出版日期:
2019-03-05

文章信息/Info

Title:
An underwater image segmentation method based on the variational level set theory
作者:
席志红 赵春梅
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
XI Zhihong ZHAO Chunmei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
水下图像分割|活动轮廓模型|李纯明模型|C-V模型|变分法|水平集理论|灰度图像|水下图像
Keywords:
underwater image segmentation|active contour model|Lee’s model|C-V model|variational method|horizontal set theory|grayscale image|underwater images
分类号:
TP31
DOI:
10.11991/yykj.201807004
文献标志码:
A
摘要:
为解决水下图像的分割问题,在李纯明模型(Li模型)和Chan-Vese模型(C-V模型)的基础上提出了指定目标的分割方法和多灰度目标的分割方法。对于指定灰度目标的分割方法,在C-V模型基础上加入了小范围的距离约束项,使其具有了局部性,可在多灰度目标中分割出预期目标;对于多灰度目标的分割方法,在李纯明方法的基础上加入了边缘定位函数作为其内部能量项,其对多灰度目标分割结果较好,且抗噪性较好。最后通过实验证明本文2种方法对水下多灰度目标图像的分割是有效的。
Abstract:
In order to solve the problem of underwater image segmentation, the segmentation methods for a designated target and a multi-grayscale target are proposed respectively based on the Li Chunming model (Lee’s model) and the Chan-Vese (C-V) model. For the segmentation method of a specified grayscale object, a small range of distance restriction item is added on the basis of the C-V model, making it have locality characteristic, and segment the desired target from the multi-gray target. The multi-gray target segmentation method is to join the edge detection function as the item of internal energy based on Li Chunming method. The results of multi-gray target segmentation are good, and the anti-noise characteristic is better. Finally, the effectiveness of the proposed two methods is verified.

参考文献/References:

[1] 李煊. 基于单目视觉的水下图像分割及目标定位技术研究[D]. 哈尔滨:哈尔滨工程大学, 2013.
[2] 刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展[J]. 自动化学报, 2012, 38(6):911-922
[3] 史言彬. 基于单目视觉的水下目标识别和定位方法研究[D]. 哈尔滨:哈尔滨工程大学, 2016.
[4] FU K S, MUI J K. A survey on image segmentation[J]. Pattern recognition, 1981, 13(1):3-16.
[5] TEIMOURI N, OMID M, MOLLAZADE K, et al. A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow[J]. Computers and electronics in agriculture, 2014, 105:34-43.
[6] MATALAS L, BENJAMIN R, KITNEY R. An edge detection technique using the facet model and parameterized relaxation labeling[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(4):328-341.
[7] CHEN H H, CHUANG Wenning, WANG C C. Vision-based line detection for underwater inspection of breakwater construction using an ROV[J]. Ocean engineering, 2015, 109:20-33.
[8] LEE D, KIM G, KIM D, et al. Vision-based object detection and tracking for autonomous navigation of underwater robots[J]. Ocean engineering, 2012, 48:59-68.
[9] BARAT C, PHLYPO R. A fully automated method to detect and segment a manufactured object in an underwater color image[J]. EURASIP journal on advances in signal processing, 2010, 2010:568092.
[10] FU K S, MUI J K. A Survey on image segmentation[J]. Pattern recognition, 1981, 13(1):3-16.
[11] KASS M, WITKIN A, TERZOPOULOS D. Snakes:active contour models[J]. International journal of computer vision, 1988, 1(4):321-331.
[12] 陈波. 基于变分框架的图像分割和图像恢复研究[D]. 广州:中山大学, 2007.
[13] 陈波, 赖剑煌. 用于图像分割的活动轮廓模型综述[J]. 中国图象图形学报, 2007, 12(1):11-20
[14] OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York:Springer-Verlag, 2002.
[15] SETHIAN J A. Curvature and the evolution of fronts[J]. Communications in mathematical physics, 1985, 101(4):487-499.
[16] 曹俊峰. 基于水平集方法的图像分割研究[D]. 无锡:江南大学, 2017.
[17] 谢小敏. 水下图像分割和典型目标特征提取及识别技术研究[D]. 南京:南京理工大学, 2015.

备注/Memo

备注/Memo:
收稿日期:2018-07-06。
基金项目:国家自然科学基金项目(60875025)
作者简介:席志红,女,教授;赵春梅,女,硕士研究生
通讯作者:赵春梅,E-mail:1311557017@qq.com
更新日期/Last Update: 2019-03-06