[1]范淇元,覃羡烘,朱培杰.基于EmguCV的智能服务机器人人脸识别系统设计[J].应用科技,2019,46(03):58-63.[doi:10.11991/yykj.201808009]
 FAN Qiyuan,QIN Xianhong,ZHU Peijie.Design of intelligent service robot face recognition system based on EmguCV[J].Applied science and technology,2019,46(03):58-63.[doi:10.11991/yykj.201808009]
点击复制

基于EmguCV的智能服务机器人人脸识别系统设计(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年03期
页码:
58-63
栏目:
自动化技术
出版日期:
2019-04-29

文章信息/Info

Title:
Design of intelligent service robot face recognition system based on EmguCV
作者:
范淇元1 覃羡烘2 朱培杰1
1. 华南理工大学广州学院 机械工程学院, 广东 广州 510800;
2. 广东理工学院 工业自动化系, 广东 肇庆 526100
Author(s):
FAN Qiyuan1 QIN Xianhong2 ZHU Peijie1
1. College of Mechanical Engineering, Guangzhou College of South China University of Technology, Guangzhou 510800, China;
2. Department of Industrial Automation, Guangdong Polytechnic College, Zhaoqing 526100, China
关键词:
EmguCV人脸识别图像处理智能服务机器人LBP算法人机交互Haar特征
Keywords:
EmguCVface recognitionimage processingsmart servicesrobotLBP algorithmhuman-computer interactionHaar features
分类号:
TP301
DOI:
10.11991/yykj.201808009
文献标志码:
A
摘要:
为了提高服务型机器人的容错率和识别率,解决机器人不能对对应的服务项目智能选择的难题,采用在EmguCV基础上对图像进行灰度转换、降噪和均衡化处理的同时,运用Haar特征对图像进行人脸检测处理,再通过对局部二值模式(LBP)人脸识别算法的反复实验,修改编程设计、简化代码并添加语音互动系统,实现了对人体脸部的特征信息进行对比识别的技术,可直接通过设备调用对人脸进行检测,提高了人与机器人之间的互动深度,使得人脸识别技术在更广阔的领域应用。
Abstract:
In order to improve the fault tolerance and recognition rate of service robots, solve the problem that robots cannot intelligently select corresponding service items, we performed grayscale conversion, noise reduction, and equalization on an image based on EmpuCV, and in the mean time, applied Haar feature to face detection and processing, and then carried out repeated experiments on the local binary patterns (LBP) face recognition algorithm, modification to programming, simplification of the code and adding a voice interaction system, realizing the technology for comparing and identifying the feature information of the human face. The face can be directly detected by the device call, which improves the depth of interaction between human beings and robots, and enables face recognition technology to be applied in a wider field.

参考文献/References:

[1] COMELLI P, FERRAGINA P, GRANIERI M N, et al. Optical recognition of motor vehicle license plates[J]. IEEE transactions on vehicular technology, 1995, 44(4):790-799.
[2] 刘维一, 盛益强, 乔辉, 等. 特征点匹配法实现汽车牌照的快速识别[J]. 光电子·激光, 2002, 13(3):274-276
[3] CHOI S I, CHOI C H, KWAK N. Face recognition based on 2D images under illumination and pose variations[J]. Pattern recognition letters, 2011, 32(4):561-571.
[4] RUIZ-DEL-SOLAR J, QUINTEROS J. Illumination compensation and normalization in eigenspace-based face recognition:A comparative study of different pre-processing approaches[J]. Pattern recognition letters, 2008, 29(14):1966-1979.
[5] CHINTALAPATI S, RAGHUNADH M V. Illumination, expression and occlusion invariant pose-adaptive face recognition system for real-time applications[J]. International journal of engineering trends and technology (IJETT), 2014, 8(6):292-298.
[6] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):711-720.
[7] SAMARIA F, YOUNG S. HMM-based architecture for face identification[J]. Image and vision computing, 1994, 12(8):537-543.
[8] WISKOTT L, KRÜGER N, KUIGER N, et al. Face recognition by elastic bunch graph matching[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):775-779.
[9] JUN Bongjin, LEE J, KIM D. A novel illumination-robust face recognition using statistical and non-statistical method[J]. Pattern recognition letters, 2011, 32(2):329-336.
[10] 赵春江. C#数字图像处理算法典型实例[M]. 北京:人民邮电出版社, 2009.
[11] LAGANIERE R. OpenCV2计算机视觉编程手册[M]. 张静, 译. 北京:科学出版社, 2013.
[12] PRATA S. C++Primer Plus中文版[M]. 6版. 张海龙, 袁国忠, 译. 北京:人民邮电出版社, 2012.
[13] WAI Rongjong. Tracking control based on neural network strategy for robot manipulator[J]. Neurocomputing, 2002, 51:425-445.
[14] DAWSON D M, QU Z, LEWIS F L, et al. Robust control for the tracking of robot motion[J]. International journal of control, 1990, 52(3):581-595.
[15] BÜCHER A, DETTE H, WIECZOREK G. Testing model assumptions in functional regression models[J]. Journal of multivariate analysis, 2011, 102(10):1472-1488.

相似文献/References:

[1]谢红,宁志刚,刘世航.一种新的DK-L人脸识别算法研究[J].应用科技,2009,36(02):42.
 XIE Hong,NING Zhi-gang,LIU Shi-hang.New algorithm of DK-L face recognition[J].Applied science and technology,2009,36(03):42.
[2]王帆,赵春晖,张志.基于克隆选择算法的人脸特征选择[J].应用科技,2009,36(03):11.
 WANG Fan,ZHAO Chun-hui,ZHANG Zh.Feature selection of face recognition based on genetic algorithm[J].Applied science and technology,2009,36(03):11.
[3]谢红,宁志刚,张磊.基于DCT和2D-PCA的人脸识别算法研究[J].应用科技,2009,36(06):34.[doi:doi:10.3969/j.issn.1009-671X.2009.06.008]
 XIE Hong,NING Zhi-gang,ZHANG Lei.Face recognition system based on DCT and modular 2DPCA[J].Applied science and technology,2009,36(03):34.[doi:doi:10.3969/j.issn.1009-671X.2009.06.008]
[4]吴限,刘崎峰.被动人脸识别在智能安全控制系统中的应用[J].应用科技,2015,42(02):21.[doi:10.3969/j.issn.1009-671X.201406004]
 WU Xian,LIU Qifeng.Application of passive face recognition in the intelligent safety control system[J].Applied science and technology,2015,42(03):21.[doi:10.3969/j.issn.1009-671X.201406004]

备注/Memo

备注/Memo:
收稿日期:2018-08-18。
基金项目:国家教师科研基金十二五规划重点课题(GGZ1320946)
作者简介:范淇元,男,副教授
通讯作者:覃羡烘,E-mail:39758304@qq.com
更新日期/Last Update: 2019-04-29