[1]汤华鹏,温济铭,谷海峰.基于高速摄影测量气泡体积的图像处理技术研究[J].应用科技,2019,46(02):108-115.[doi:10.11991/yykj.201809012]
 TANG Huapeng,WEN Jiming,GU Haifeng.Study on image processing technique for bubble volume based on high speed camera[J].Applied science and technology,2019,46(02):108-115.[doi:10.11991/yykj.201809012]
点击复制

基于高速摄影测量气泡体积的图像处理技术研究(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年02期
页码:
108-115
栏目:
核科学技术与应用
出版日期:
2019-03-05

文章信息/Info

Title:
Study on image processing technique for bubble volume based on high speed camera
作者:
汤华鹏1 温济铭2 谷海峰2
1. 中国核动力研究设计院 核反应堆系统设计技术重点实验室, 四川 成都 610213;
2. 哈尔滨工程大学 核安全与仿真技术国防重点学科实验室, 黑龙江 哈尔滨 150000
Author(s):
TANG Huapeng1 WEN Jiming2 GU Haifeng2
1. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China;
2. Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
关键词:
鼓泡塔|气泡体积|图像处理|光学法|切片法|自适应|气泡变形|实验
Keywords:
bubble column|bubble volume|image processing|optical method|segment method|adaptive|bubble deformation|experiment
分类号:
TL329
DOI:
10.11991/yykj.201809012
文献标志码:
A
摘要:
为获得鼓泡过滤装置内尺寸较大且存在明显变形的气泡的体积,介绍了4种图像处理气泡体积的方法:等效直径法、椭球体积公式法、水平切片法和自适应切片法。分析每种方法的基本思想和使用条件,并利用这些方法计算出气泡的体积。同时,采用气泡收集法对气泡体积进行实验测量,将4种图像处理技术计算出的气泡体积与实验测量值进行对比,来评价各种方法的准确性。结果表明:等效直径法和椭球体积公式法因需要获取表述气泡整体几何特征的参数来计算气泡体积,因此当气泡变形严重时,特征参数会发生较大变化进而整体处理精度受影响较大;水平切片法对椭球形气泡具有高精度的处理结果,但当气泡对称轴发生偏转或气泡形状为碟形时,处理精度明显变差;自适应切片法能根据圆形度来识别气泡形状,同时,针对不同的气泡形状,以对称轴为参考来确定合适的切片方向,具有很强的适用性和较高的计算精度。
Abstract:
In order to calculate the volume of bubble with big diameter and severe deformation in bubble column used in filtered containment venting system, this paper introduces four image processing methods for calculating bubble volume, which are equivalent diameter method, ellipsoid volume calculation formulation, horizontal segment method and adaptive segment method, respectively. Analyze the principle and application condition of each method, and calculate bubble volume by these four methods. In the mean time, measure the bubble volume by bubble collecting method. And further, compare the bubble volume calculated by 4 image processing methods and the measured value from experiment, so as to evaluate correctness of the above-mentioned methods. The results show that equivalent diameter method and ellipsoid volume calculation formulation need to use parameters that express integral geometrical feature of the bubble when calculating bubble volume, therefore, when the bubble deforms seriously, the feature parameters changes largely, which will further influence the whole processing precision seriously. Though horizontal segment method possesses excellent performance for calculating ellipsoid bubble, it becomes weak as bubbles’ symmetry axis deflects or bubble geometry forms like a disk. Adaptive segment method is the most suitable and high-precision method for highly distorted bubbles, because bubble geometry is recognized according to circularity, and that segment direction is determined by bubble geometry and bubble symmetry.

参考文献/References:

[1] LEGENDRE D, ZENIT R, VELEZ-CORDERO J R. On the deformation of gas bubbles in liquids[J]. Physics of fluids, 2012, 24(4):043303.
[2] KYRIAKIDES N K, KASTRINAKIS E G, NYCHAS S G, et al. Bubbling from nozzles submerged in water:transitions between bubbling regimes[J]. The Canadian journal of chemical engineering, 1997, 75(4):684-691.
[3] ZHANG Lei, SHOJI M. Aperiodic bubble formation from a submerged orifice[J]. Chemical engineering science, 2001, 56(18):5371-5381.
[4] AYBERS N M, TAPUCU A. Studies on the drag and shape of gas bubbles rising through a stagnant liquid[J]. Wärme-und stoffübertragung, 1969, 2(3):171-177.
[5] SABERI S, SHAKOURZADEH K, BASTOUL D, et al. Bubble size and velocity measurement in gas-liquid systems:application of fiber optic technique to pilot plant scale[J]. The Canadian journal of chemical engineering, 1995, 73(2):253-257.
[6] DE LASA H, LEE S L P, BERGOUGNOU M A. Bubble measurement in three-phase fluidized beds using a u-shaped optical fiber[J]. The Canadian journal of chemical engineering, 1984, 62(2):165-169.
[7] MARTÍNEZ MERCADO J, CHEHATA GÓMEZ D, VAN GILS D, et al. On bubble clustering and energy spectra in pseudo-turbulence[J]. Journal of fluid mechanics, 2010, 650:287-306.
[8] PRASSER H M. Novel experimental measuring techniques required to provide data for CFD validation[J]. Nuclear engineering and design, 2008, 238(3):744-770.
[9] SCHMIDT I, MINCEVA M, ARLT W. Selection of stationary phase particle geometry using X-ray computed tomography and computational fluid dynamics simulations[J]. Journal of chromatography A, 2012, 1225:141-149.
[10] KULKARNI A A, JOSHI J B, KUMAR V R, et al. Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA[J]. Chemical engineering science, 2001, 56(17):5037-5048.
[11] MAJUMDER S K, KUNDU G, MUKHERJEE D. Bubble size distribution and gas-liquid interfacial area in a modified downflow bubble column[J]. Chemical engineering journal, 2006, 122(1/2):1-10.
[12] HONKANEN M, ELORANTA H, SAARENRINNE P. Digital imaging measurement of dense multiphase flows in industrial processes[J]. Flow measurement and instrumentation, 2010, 21(1):25-32.
[13] LECUONA A, SOSA P A, RODRÍGUEZ P A, et al. Volumetric characterization of dispersed two-phase flows by digital image analysis[J]. Measurement science and technology, 2000, 11(8):1152-1161.
[14] MIKAELIAN D, LARCY AÉLIE, DEHAECK S, et al. A new experimental method to analyze the dynamics and the morphology of bubbles in liquids:application to single ellipsoidal bubbles[J]. Chemical engineering science, 2013, 100:529-538.
[15] KESHAVARZI G, PAWELLA R S, BARBER T J, et al. Transient analysis of a single rising bubble used for numerical validation for multiphase flow[J]. Chemical engineering science, 2014, 112:25-34.
[16] HONKANEN M, SAARENRINNE P, STOOR T, et al. Recognition of highly overlapping ellipse-like bubble images[J]. Measurement science and technology, 2005, 16(9):1760-1770.
[17] LAGE L C P, ESPÓSITO R O. Experimental determination of bubble size distributions in bubble columns:prediction of mean bubble diameter and gas hold up[J]. Powder technology, 1999, 101(2):142-150.
[18] WONGSUCHOTO P, CHARINPANITKUL T, PAVASANT P. Bubble size distribution and gas-liquid mass transfer in airlift contactors[J]. Chemical engineering journal, 2003, 92(1/2/3):81-90.
[19] RAKOCZY R, MASIUK S. Experimental study of bubble size distribution in a liquid column exposed to a rotating magnetic field[J]. Chemical engineering and processing:process intensification, 2009, 48(7):1229-1240.
[20] HANSELMANN W, WINDHAB E. Flow characteristics and modelling of foam generation in a continuous rotor/stator mixer[J]. Journal of food engineering, 1998, 38(4):393-405.
[21] AL-OUFI F M, RIELLY C D, CUMMING I W. An experimental study of gas void fraction in dilute alcohol solutions in annular gap bubble columns using a four-point conductivity probe[J]. Chemical engineering science, 2011, 66(23):5739-5748.

备注/Memo

备注/Memo:
收稿日期:2018-09-17。
基金项目:国家自然科学基金项目(11705036)
作者简介:汤华鹏,男,工程师
通讯作者:谷海峰,E-mail:guhaifeng@hrbeu.edu.cn
更新日期/Last Update: 2019-03-06