[1]李继广,董彦非,屈高敏,等.一种基于人类学习认知过程的PID控制方法[J].应用科技,2019,46(02):75-79.[doi:10.11991/yykj.201811006]
 LI Jiguang,DONG Yanfei,QU Gaomin,et al.An PID control method based on human learning cognitive process[J].Applied science and technology,2019,46(02):75-79.[doi:10.11991/yykj.201811006]
点击复制

一种基于人类学习认知过程的PID控制方法(/HTML)
分享到:

《应用科技》[ISSN:1009-671X/CN:23-1191/U]

卷:
第46卷
期数:
2019年02期
页码:
75-79
栏目:
自动化技术
出版日期:
2019-03-05

文章信息/Info

Title:
An PID control method based on human learning cognitive process
作者:
李继广13 董彦非1 屈高敏1 杨雷恒2 易俊杰1
1. 西安航空学院 飞行器学院, 陕西 西安 710077;
2. 西安航空职业技术学院 通用航空学院, 陕西 西安 710089;
3. 西安市无人机应用创新基地, 陕西 西安 710071
Author(s):
LI Jiguang13 DONG Yanfei1 QU Gaomin1 YANG Leiheng2 YI Junjie1
1. School of Aerocraft, Xi’an Aeronautical University, Xi’an 710077, China;
2. School of General Aviation, Xi’an Aerotechnical Polytechnic College, Xi’an 710089, China;
3. Xi’an UAV Application Innovation Base, Xi’an 710071, China
关键词:
智能控制|人类学习模型|控制方法|智能PID控制器|自适应方法|参数整定|复杂系统|非线性
Keywords:
intelligent control|human learning model|control method|intelligent PID controller|adaptive method|parameter tuning|complex system|nonlinear
分类号:
TJ391;TJ761.1
DOI:
10.11991/yykj.201811006
文献标志码:
A
摘要:
针对传统PID方法对复杂系统非线性问题控制能力不足缺点,提出了一种基于人类学习认识模型的智能PID控制方法。首先建立了人类不同年龄阶段学习认识过程的数学模型,并应用该模型设计了一种可以在线自主调参的智能PID控制器。该控制器不仅具有自学习、自调整的能力,还克服了大多数智能方法计算迭代复杂、没有数学解析模型的缺点。仿真结果表明本文设计的控制器是有效的。
Abstract:
In order to overcome the shortcomings of traditional PID methods in controlling nonlinear problem of complex systems, an intelligent PID control method based on human learning cognitive model is proposed in this paper. Firstly, the mathematical model of learning process in different age stages of the mankind was established, and an intelligent PID controller with on-line self-tuning parameters was designed. The controller not only has the ability of self-learning and self-adjusting, but also overcomes the shortcomings of most intelligent methods, such as complicated iteration and not having mathematical analytical model. The simulation results show that the controller is effective.

参考文献/References:

[1] 黄琳, 杨莹, 李忠奎. 关于智能控制的几个问题[J]. 中国科学:信息科学, 2018, 48(8):1112-1120
[2] 王飞跃, 魏庆来. 智能控制:从学习控制到平行控制[J]. 控制理论与应用, 2018, 35(7):939-948
[3] CHENG Shi, ZHANG Qingyu, QIN Quande. Big data analytics with swarm intelligence[J]. Industrial management & data systems, 2016, 116(4):646-666.
[4] XIA Junbo. Coverage optimization strategy of wireless sensor network based on swarm intelligence algorithm[C]//2016 International Conference on Smart City and Systems Engineering. Changsha, China:IEEE, 2017:179-182.
[5] DEVI K U, SARMA D, LAISHRAM R. Swarm intelligence based computing techniques in speech enhancement[C]//2015 International Conference on Green Computing and Internet of Things. Noida, India:IEEE, 2015:1199-1203.
[6] 陶洪峰, 沈建强, 陈刚, 等. 非线性时滞系统的未知方向自适应学习控制[J]. 控制工程, 2017, 24(6):1170-1174
[7] 邓思宇, 刘福伦, 黄雨婷, 等. 基于Page Rank的主动学习算法[J/OL]. 智能系统学报:(2018-06-27)[2018-08-20]. http://kns.cnki.net/kcms/detail/23.1538.TP.20180627.1529.002.html. DOI:10.11992/tis.201804052.
[8] 贾晨, 刘华平, 续欣莹, 等. 基于宽度学习方法的多模态信息融合[J/OL]. 智能系统学报:(2018-05-22)[2018-08-20]. http://kns.cnki.net/kcms/detail/23.1538.TP.20180522.1345.002.html. DOI:10.11992/tis.201803022.
[9] CHEN C L P, LIU Zhulin. Broad learning system:an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE transactions on neural networks and learning systems, 2017, 29(1):10-24.
[10] HABBI H, BOUDOUAOUI Y, KARABOGA D, et al. Self-generated fuzzy systems design using artificial bee colony optimization[J]. Information sciences, 2015, 295:145-159.
[11] 杨斯博, 李敏强. 一个基于自组织多Agent系统的智能控制与决策模型[J]. 天津大学学报, 2012, 45(10):903-911
[12] 邵景峰, 马创涛. 一种多工序知识关联的纺纱质量智能控制模型[J]. 控制理论与应用, 2018, 35(6):840-851
[13] 付翔, 王然风. 基于意识-情感-智能三位一体的煤矿供液过程控制[J]. 智能系统学报, 2018, 13(4):640-649
[14] 王鑫, 贾涛, 闻新. Elman神经网络控制与LQR的实践与分析[J]. 工业控制计算机, 2018, 31(3):81-82
[15] WANG Min, MIN Fan, ZHANG Zhiheng, et al. Active learning through density clustering[J]. Expert systems with applications, 2017, 85:305-317.
[16] SUN Shujin, ZHONG Ping, XIAO Huaitie, et al. An MRF model-based active learning framework for the spectral-spatial classification of hyperspectral imagery[J]. IEEE journal of selected topics in signal processing, 2015, 9(6):1074-1088.
[17] 许进超, 杨翠丽, 乔俊飞, 等. 基于自组织模糊神经网络溶解氧控制方法研究[J]. 智能系统学报, 2018, 7(1):1-7
[18] 余鹰, 王乐为, 吴新念, 等. 基于改进卷积神经网络的多标记分类算法[J/OL]. 智能系统学报:(2018-06-10)[2018-08-20]. http://kns.cnki.net/kcms/detail/23.1538.TP.20180610.2155.002.html. DOI:10.11992/tis.201804056.

备注/Memo

备注/Memo:
收稿日期:2018-11-06。
基金项目:通用航空技术中心基金项目(XHY-2016084);陕西省自然科学基金项目(2016JM1014)
作者简介:李继广,男,讲师,博士;董彦非,男,教授,博士
通讯作者:李继广,E-mail:912646963@qq.com
更新日期/Last Update: 2019-03-06